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It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”
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It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



A Decidable Problem

Presburger arithmetic is a logical system for reasoning about 
arithmetic.

∀x. x + 1 ≠ 0

∀x. ∀y. (x + 1 = y + 1 → x = y)

∀x. x + 0 = x

∀x. ∀y. (x + y) + 1 = x + (y + 1)

(P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

Given a statement, it is decidable whether that statement can be 
proven from the laws of Presburger arithmetic.

Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move its tape head 
at least       times on some inputs of length n (for some fixed 
constant c ≥ 1).
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For Reference

Assume c = 1.
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The Limits of Decidability

The fact that a problem is decidable does not 
mean that it is feasibly decidable.

In computability theory, we ask the question

What problems can be solved by a computer?

In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

In the remainder of this course, we will 
explore this question in more detail.



Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.



Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.
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The Setup

In order to study computability, we needed to 
answer these questions:

• What is “computation?”

• What is a “problem?”

• What does it mean to “solve” a problem?

To study complexity, we need to answer these 
questions:

• What does “complexity” even mean?

• What is an “efficient” solution to a problem?



Measuring Complexity

Suppose that we have a decider D for some language L.

How might we measure the complexity of D?

• Number of states.

• Size of tape alphabet.

• Size of input alphabet.

• Amount of tape required.

• Number of steps required.

• Number of times a given state is entered.

• Number of times a given symbol is printed.

• Number of times a given transition is taken.

• (Plus a whole lot more...)
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What is an efficient algorithm?



Searching Finite Spaces

• Many decidable problems can be solved by 
searching over a large but finite space of 
possible options.

• Searching this space might take a 
staggeringly long time, but only finite time.

• From a decidability perspective, this is 
totally fine.

• From a complexity perspective, this may be 
totally unacceptable.



A Sample Problem
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Longest Increasing Subsequences

One possible algorithm: try all subsequences, find 
the longest one that's increasing, and return that.

There are 2n subsequences of an array of length n.

(Each subset of the elements gives back a 
subsequence.)

Checking all of them to find the longest increasing 
subsequence will take time O(n · 2n).

Nifty fact: the age of the universe is about 4.3 × 1026

nanoseconds old. That's about 285 nanoseconds.

Practically speaking, this algorithm doesn't terminate if 
you give it an input of size 100 or more.



A Different Approach



Patience Sorting
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Place each number on top of a pile.

Put each number on top of the first pile 
whose top value is larger than it. (If you 

can’t, make a new pile.)

Then, add a link to the top number in the 
previous pile.
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Longest Increasing Subsequences

Theorem: There is an algorithm that can find the 
longest increasing subsequence of an array in time 
O(n²).

It’s the previous patience sorting algorithm, with 
some clever implementation tricks.

This algorithm works by exploiting particular 
aspects of how longest increasing subsequences 
are constructed. It's not immediately obvious that it 
works correctly.

Phenomenal Exercise 1: Prove that this 
procedure always works!

Phenomenal Exercise 2: Show that you can 
actually implement this same algorithm in time O(n
log n).
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Another Problem
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Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.



Shortest Paths

It is possible to find the shortest path in a 
graph by listing off all sequences of nodes 
in the graph in ascending order of length 
and finding the first that's a path.

This takes time O(n · n!) in an n-node 
graph.

For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



Shortest Paths

Theorem: It's possible to find the shortest 
path between two nodes in an n-node, m-
edge graph in time O(m + n).

Proof idea: Use breadth-first search!

The algorithm is a bit nuanced. It uses 
some specific properties of shortest paths 
and the proof of correctness is nontrivial.



For Comparison

Longest increasing 
subsequence:

Naive: O(n · 2n)

Fast: O(n²)

Shortest path 
problem:

Naive: O(n · n!)

Fast: O(n + m).



Defining Efficiency

• When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

• Brute-force solutions tend to take at least 
exponential time to complete.

• Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



Polynomials and Exponentials

• An algorithm runs in polynomial time if its 
runtime is some polynomial in n.

• That is, time O(nk) for some constant k.

• Polynomial functions “scale well.”

• Small changes to the size of the input do 
not typically induce enormous changes to 
the overall runtime.

• Exponential functions scale terribly.

• Small changes to the size of the input 
induce huge changes in the overall runtime.



The Cobham-Edmonds Thesis

A language L can be decided efficiently if

there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



The Cobham-Edmonds Thesis

Efficient runtimes:

4n + 13

n3 – 2n2 + 4n

n log log n

“Efficient” runtimes:

n1,000,000,000,000

10500

Inefficient runtimes:

2n

n!

nn

“Inefficient” runtimes:

n0.0001 log n

1.000000001n



Why Polynomials?

Polynomial time somewhat captures efficient 
computation, but has a few edge cases.

However, polynomials have very nice mathematical 
properties:

• The sum of two polynomials is a polynomial. 
(Running one efficient algorithm, then another, 
gives an efficient algorithm.)

• The product of two polynomials is a polynomial. 
(Running one efficient algorithm a “reasonable” 
number of times gives an efficient algorithm.)

• The composition of two polynomials is a 
polynomial. (Using the output of one efficient 
algorithm as the input to another efficient 
algorithm gives an efficient algorithm.)



The Complexity Class P

The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

Formally:

P = { L | There is a polynomial-time   
decider for L } 

Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
efficiently.



Examples of Problems in P

All regular languages are in P.

• All have linear-time TMs.

All CFLs are in P.

• Requires a more nuanced argument (the 
CYK algorithm or Earley's algorithm.)

And a ton of other problems are in P as 
well.

Curious? Take CS161!
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What can't you do in polynomial time?



start

end

How many simple paths 
are there from the start 
node to the end node?



, , ,

How many subsets of 
this set are there?



An Interesting Observation

There are (at least) exponentially many 
objects of each of the preceding types.

However, each of those objects is not very 
large.

Each simple path has length no longer than 
the number of nodes in the graph.

Each subset of a set has no more elements 
than the original set.

This brings us to our next topic...



What if you need to search a large 
space for a single object?



Verifiers – Again
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Does this Sudoku problem have a solution?
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Verifiers – Again

Is there an ascending subsequence of length at least 7?



4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifiers – Again

Is there an ascending subsequence of length at least 7?



Verifiers – Again

Is there a simple path that goes through every node exactly once?



Verifiers – Again

Is there a simple path that goes through every node exactly once?
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Verifiers

Recall that a verifier for L is a TM V such 
that

V halts on all inputs.

w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.



Polynomial-Time Verifiers

A polynomial-time verifier for L is a TM 
V such that

V halts on all inputs.

w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.

V's runtime is a polynomial in |w| (that is, 
V's runtime is O(|w|k) for some integer k)



The Complexity Class NP

The complexity class NP (nondeterministic 
polynomial time) contains all problems that can be 
verified in polynomial time.

Formally:

NP = { L | There is a polynomial-time 
verifier for L }

The name NP comes from another way of 
characterizing NP. If you introduce nondeterministic 
Turing machines and appropriately define “polynomial 
time,” then NP is the set of problems that an NTM can 
solve in polynomial time.

Useful fact: NP ⊊ R. Come talk to me after class if 
you’re curious why!



P =   { L | there is a polynomial-time

decider for L }

NP =   { L | there is a polynomial-time

verifier for L }



R =   { L | there is a polynomial-time

decider for L }

RE =   { L | there is a polynomial-time

verifier for L }



We know that R ≠ RE.

So does that mean P ≠ NP?



And now...



The

Biggest Question

in

Theoretical Computer Science



P ≟ NP
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P ≟ NP

The P ≟ NP question is the most important question in 
theoretical computer science.

With the verifier definition of NP, one way of phrasing 
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

An answer either way will give fundamental insights into 
the nature of computation.



Why This Matters

The following problems are known to be efficiently verifiable, 
but have no known efficient solutions:

Determining whether an electrical grid can be built to link up some 
number of houses for some price (Steiner tree problem).

Determining whether a simple DNA strand exists that multiple gene 
sequences could be a part of (shortest common supersequence).

Determining the best way to assign hardware resources in a compiler 
(optimal register allocation).

Determining the best way to distribute tasks to multiple workers to 
minimize completion time (job scheduling).

And many more.

If P = NP, all of these problems have efficient solutions.

If P ≠ NP, none of these problems have efficient solutions.



Why This Matters

If P = NP:

A huge number of seemingly difficult 
problems could be solved efficiently.

Our capacity to solve many problems will 
scale well with the size of the problems we 
want to solve.

If P ≠ NP:

Enormous computational power would be 
required to solve many seemingly easy tasks.

Our capacity to solve problems will fail to 
keep up with our curiosity.



What We Know

Resolving P ≟ NP has proven extremely difficult.

In the past 45 years:

• Not a single correct proof either way has been found.

• Many types of proofs have been shown to be 
insufficiently powerful to determine whether P ≟ NP.

• A majority of computer scientists believe P ≠ NP, but 
this isn't a large majority.

• Interesting read: Interviews with leading thinkers 
about P ≟ NP:

• http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


The Million-Dollar Question

The Clay Mathematics Institute has offered a 
$1,000,000 prize to anyone who proves or 

disproves P = NP.



“My hunch is that [P ≟ NP] will be solved 
by a young researcher who is not 

encumbered by too much conventional 
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who first popularized the P ≟ NP problem.)



“There is something very strange about this 
problem, something very philosophical. It is 

the greatest unsolved problem in mathematics 
[…] It is the raison d’être of abstract computer 

science, and as long as it remains unsolved, 
its mystery will ennoble the field.”

-Prof. Jim Owings
(Computability/Complexity theorist)



What do we know about P ≟ NP?



Adapting our Techniques



P =   { L | there is a polynomial-time

decider for L }

NP =   { L | there is a polynomial-time

verifier for L }



R =   { L | there is a polynomial-time

decider for L }

RE =   { L | there is a polynomial-time

verifier for L }



We know that R ≠ RE.

So does that mean P ≠ NP?



A Problem

The R and RE languages correspond to 
problems that can be decided and verified, 
period, without any time bounds.

To reason about what's in R and what's in RE, 
we used two key techniques:

Universality: TMs can run other TMs as 
subroutines.

Self-Reference: TMs can get their own 
source code.

Why can't we just do that for P and NP?



Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!



So how are we going to
reason about P and NP?



NPP
REG

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?



Reducibility



Maximum Matching

Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

A maximum matching is a matching with the 
largest number of edges.
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Maximum Matching

Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

A maximum matching is a matching with the 
largest number of edges.



Maximum Matching

Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time algorithm 
for finding maximum matchings.

He’s the guy with the quote about “better 
than decidable.”

Using this fact, what other problems can 
we solve?



Domino Tiling
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Solving Domino Tiling



Solving Domino Tiling



In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

return hasMatching(gridToGraph(G), k);

}



Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching efficiently, we can solve domino

tiling efficiently.



Another Example



Reachability

● Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

● This problem can be solved in polynomial
time (use DFS or BFS).



Converter Conundrums

Suppose that you want to plug your laptop 
into a projector.

Your laptop only has a VGA output, but the 
projector needs HDMI input.

You have a box of connectors that convert 
various types of input into various types of 
output (for example, VGA to DVI, DVI to 
DisplayPort, etc.)

Question: Can you plug your laptop into the 
projector?



Converter Conundrums
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DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
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USB to S-Video
SDI to HDMI
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Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

return isReachable(plugsToGraph(plugs),
VGA, HDMI);

}



Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than

determining reachability in a graph, since
if we can determine reachability in a graph,
we can find a way to plug a computer into a

projector.



Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
return solveProblemB(transform(input));

}



bool solveProblemA(string input) {
return solveProblemB(transform(input));

}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that transform
* runs in polynomial time.



bool solveProblemA(string input) {
return solveProblemB(transform(input));

}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.
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This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



Next Time

NP-Completeness

What are the hardest problems in NP?



Next Time
Right now

NP-Completeness

What are the hardest problems in NP?



Complexity Theory
Part Two



Recap from Last Time



The Complexity Class P

The complexity class P (polynomial time) 
is defined as

P = { L | There is a polynomial-time 
decider for L }

Intuitively, P contains all decision problems 
that can be solved efficiently.

This is like class P, except with “efficiently” 
tacked onto the end.



The Complexity Class NP

The complexity class NP (nondeterministic 
polynomial time) contains all problems that 
can be verified in polynomial time.

Formally:

NP = { L | There is a polynomial-time 
verifier for L }

Intuitively, NP is the set of problems where 
“yes” answers can be checked efficiently.

This is like the class RE, but with “efficiently” 
tacked on to the definition.



The Biggest Unsolved Problem in
Theoretical Computer Science:

P ≟ NP



Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!



So how are we going to
reason about P and NP?
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Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
return solveProblemB(transform(input));

}



bool solveProblemA(string input) {
return solveProblemB(transform(input));

}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that transform
* runs in polynomial time.



Polynomial-Time Reductions

● If A ≤
p

B and B ∈ P, then A ∈ P.

● If A ≤
p

B and B ∈ NP, then A ∈ NP.

NPP



This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



New Stuff!



Satisfiability

A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.

p ∧ q is satisfiable.

p ∧ ¬p is unsatisfiable.

p → (q ∧ ¬q) is satisfiable.

An assignment of true and false to the 
variables of φ that makes it evaluate to true 
is called a satisfying assignment.



SAT

The boolean satisfiability problem (SAT) 
is the following:

Given a propositional logic
formula φ, is φ satisfiable?

Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL       
formula }



Finding Cliques

Does this graph contain a k-clique?



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every 
pair of nodes

a b

dc



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every 
pair of nodes

a b

dc

Could we somehow take these rules and encode them as a 
propositional logic formula?



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every 
pair of nodes

a b

dc

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

a b

dc

Take your graph and define the following 

propositional variables. The variable c3

represents choosing node c as the 3rd

node of your clique.

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

Imagine we’re looking for a 3-clique. That means 
we need one variable in each of these groups to 

be true.

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

(a1 ∨ b1 ∨ c1 ∨ d1)

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

The first node of your clique is either a or b or

c or d.

(a1 ∨ b1 ∨ c1 ∨ d1)

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

(a1 ∨ b1 ∨ c1 ∨ d1)

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

(a1 ∨ b1 ∨ c1 ∨ d1) 
∧

(a2 ∨ b2 ∨ c2 ∨ d2)

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a b

dc

(a1 ∨ b1 ∨ c1 ∨ d1) 
∧

(a2 ∨ b2 ∨ c2 ∨ d2)
∧

(a3 ∨ b3 ∨ c3 ∨ d3)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

What is a k-clique?

A set of k nodes

Such that there’s an edge 
between every pair of 
nodes

a b

dc

(a1 ∨ b1 ∨ c1 ∨ d1) 
∧

(a2 ∨ b2 ∨ c2 ∨ d2)
∧

(a3 ∨ b3 ∨ c3 ∨ d3)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

We need to ensure we don’t pick a pair of nodes 
that don’t have an edge between them. In this 

graph, the missing edges are

{a, c} and {b, c}

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

We can’t choose both a and c because there’s 
no edge between them.

for all i, j:
(¬ai ∨ ¬cj)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

for all i, j:
(¬ai ∨ ¬cj)

for all i, j:
(¬bi ∨ ¬cj)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

Altogether, finding an assignment of true false 
values to these variables that satisfies these 

constraints would amount to finding a clique of 
desired size in our graph.

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Finding Cliques

a b

dc

What is a k-clique?

A set of k nodes

Such that there’s an 
edge between every pair 
of nodes

One example that works is to assign a1, b2, and 

d3 to be true and all other variables to be false. 

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4



Intuition:

Finding a k-clique can’t be any harder 
than solving SAT, because we can take 

any graph and encode it as a 
propositional logic formula where 

finding a satisfying assignment 
corresponds to finding a k-clique.



Solving Sudoku
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Does this Sudoku puzzle
have a solution?



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

Take your puzzle and let the variable xi,j,k

represent filling in cell (i, j) with value k.



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

for all i, j:
xi,j,1∨ … ∨ xi,j,9

∧
for all k ≠ l:

(¬xi,j,k ∨ ¬xi,j,l)

All cells (i, j) should have some value between 
1 and 9.
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

for all i, j:
xi,j,1∨ … ∨ xi,j,9

∧
for all k ≠ l:

(¬xi,j,k ∨ ¬xi,j,l)

And each cell should only be assigned one value.



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    
appears exactly once in each 
row, column, and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)



Solving Sudoku

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    
appears exactly once in each 
row, column, and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

for all k in [1, 9]:
(x1,1,k ∨ … ∨ x1,9,k)

In the first row, every value k has to be 
assigned to one of the cells.



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number appears 
exactly once in each row, 
column, and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

Add similar constraints for the other rows, 
columns, and 3x3 squares!



Solving Sudoku

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that have 
been filled in already)
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that have 
been filled in already)

(x1,3,7 ∧ x1,3,7 ∧ x1,3,7 ∧ …)
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that have 
been filled in already)

(x1,3,7 ∧ x1,5,6 ∧ x1,3,7 ∧ …)
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that have 
been filled in already)

(x1,3,7 ∧ x1,5,6 ∧ x1,6,1 ∧ …)



Solving Sudoku
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What is a Sudoku solution?

●An assignment of numbers 1 
through 9 to a 9×9 grid

●Such that each number    appears 
exactly once in each row, column, 
and 3×3 square

●Subject to some existing 
constraints (numbers that     have 
been filled in already)

Altogether, finding an assignment of true false values to these variables 
that satisfies these constraints would amount to finding a solution to our 

Sudoku puzzle.



Intuition:

Solving Sudoku can’t be any harder than 
solving SAT, because we can take any 

Sudoku puzzle and encode it as a 
propositional logic formula where finding 
a satisfying assignment corresponds to 

finding a puzzle solution.



SAT

Finding 
cliques

Solving 
Sudoku



SAT

Finding 
cliques

Solving 
Sudoku

Job 
scheduling

Tetris

Longest 
common 

subsequence

Finding 
Hamiltonian 

paths
It turns out that a lot of other problems can 

also be reduced to SAT.



Key Observations:

(1) SAT is versatile – being able to solve 
SAT allows us to solve many other 
problems.

(2) The fact that lots of problems reduce to 
SAT suggests we can gauge the difficulty 
of these problems by looking at the 
difficulty of SAT.



An Analogy: Running Really Fast



For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.

(Intuitively: B can run at least as fast as A.)

We say that person P is CS103-fast if

∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103 CS103-fastCS103-complete

Usai
n 

Bolt

Paula
Radcliffe

Fastest 
runner in 

CS103

Tied for 
fastest in 

CS103



For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)

We say that a language L is NP-hard if

∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest 

problem in 
NP

Tied for 
hardest in 

NP



Intuition: The NP-complete problems are 
the hardest problems in NP.

If we can determine how hard those 
problems are, it would tell us a lot about 

the P ≟ NP question.



The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest 

problems in NP aren’t actually that 
hard. We can solve them in 

polynomial time. So that means we 
can solve all problems in NP in 

polynomial time.



The Tantalizing Truth

NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■



The Tantalizing Truth

NP
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NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■



The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■
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P

NPC



The Tantalizing Truth

P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■



The Tantalizing Truth

P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP

aren’t in P, meaning P ≠ NP.



The Tantalizing Truth

NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



How do we even know NP-complete

problems exist in the first place?



Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifier for it. Key idea: have 
the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a polymomial-
time verifier V for an arbitrary NP language L, for 
any string w you can construct a polynomially-sized 
formula φ(w) that says “there is a certificate c where 
V accepts ⟨w, c⟩.” This formula is satisfiable if and 
only if w ∈ L, so deciding whether the formula is 
satisfiable decides whether w is in L. ■-ish

Proof: Take CS154!



Why All This Matters

Resolving P ≟ NP is equivalent to just 
figuring out how hard SAT is.

SAT ∈ P ↔    P = NP

We've turned a huge, abstract, theoretical 
problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

You can get a sense for how little we know 
about algorithms and computation given 
that we can't yet answer this question!



Why All This Matters

You will almost certainly encounter NP-hard 
problems in practice – they're everywhere!

If a problem is NP-hard, then there is no known 
algorithm for that problem that

• is efficient on all inputs,

• always gives back the right answer, and

• runs deterministically.

Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



Sample NP-Hard Problems

Computational biology: Given a set of genomes, what is the most 
probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

Game theory: Given an arbitrary perfect-information, finite, two-
player game, who wins? (Generalized geography problem)

Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data (Bayesian network 
inference problem)

Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who survive. 
(Cycle cover problem)

Systems: Given a set of processes and a number of processors, find 
the optimal way to assign those tasks so that they complete as soon 
as possible (Processor scheduling problem)



Coda: What if P ≟ NP is resolved?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback really makes a difference.



The Big Picture



Take a minute to reflect on your journey.



Set Theory

Power Sets

Cantor’s Theorem

Direct Proofs

Parity

Proof by Contrapositive

Proof by Contradiction

Modular Congruence

Number Theory

Propositional Logic

First-Order Logic

Logic Translations

Logical Negations

Propositional Completeness

Vacuous Truths

Tournament Graphs

Binary Relations

Equivalence Relations

Equivalence Classes

Systems of Representatives

Strict Orders

Functions

Injections

Surjections

Bijections

Inverse Functions

Permutations

Graphs

Connectivity

Graph Automorphisms

Vertex Covers

Bipartite Graphs

Mathematical Induction

Loop Invariants

Complete Induction

Tiling Problems

Bezout's Identity

Euclid's Algorithm

Hypercubes

Formal Languages

DFAs

Regular Languages

Closure Properties

NFAs

Subset Construction

Kleene Closures

Monoids

5-Tuples

Regular Expressions

State Elimination

Distinguishability

Myhill-Nerode Theorem

Nonregular Languages

Extended Transition Functions

Equivalence Relation Indices

Axiom of Choice

Context-Free Grammars

Turing Machines

Church-Turing Thesis

TM Encodings

Universal Turing Machines

Self-Reference

Decidability

Recognizability

Self-Defeating Objects

Undecidable Problems

Halting Problem

Verifiers

Diagonalization Language

Complexity Class P

Complexity Class NP

P ≟ NP Problem

Polynomial-Time Reducibility

NP-Completeness



You’ve done more than just check
a bunch of boxes off a list.



You’ve given yourself the foundation
to tackle problems from all over

computer science.



Kinda sorta like a left 
inverse!

Hey, you’ve seen this 
before!

From CS255



From CS145

Cartesian 
products!

Set-builder 
notation!



From CS251

Whoa, it’s a 
function!



From CS143
It’s a CFG!

It’s an automaton derived 
from a CFG!



From CS221

It’s a 
DFA!



From CS161

It’s FOL and 
functions!



From CS224W

First-order 
definitions on 

graphs!Set difference and 
cardinality!



From CS242

It’s a 
CFG!



From CS166

Fibonacci 
numbers!

Trees!

Formal proofs!



From CS238

Hey, we know that 
one!



From CS144

It’s a generalization of DFAs!



From CS168

Reducibility!

A Myhill-Nerode-
style argument!



From CS124

New definitions on 
graphs!What do graphs with 

these properties look 
like?

Transform some object 
to make it closed under 

some operation!



From CS154

Using Turing machines to 
define intrinsic information 

content!



From CS246

Functions, set union, 
and set cardinality!



From CS140

These are binary 
relations!This is a strict order!



You’ve given yourself the foundation
to tackle problems from all over

computer science.



There’s so much more to explore.

Where should you go next?



Course Recommendations

Theoryland

CS154

Phil 151

Phil 152

Math 107

Math 108

Math 120

Math 113

Math 161

Math 152

Applications

CS124

CS143

CS161

CS224W

CS243

CS246

CS242

CS251

CS255

Functions      

Relations
Graphs           

Symmetries

Number Theory

Set Theory

Computability

Languages /
Automata

Graphs

Functions



Your Questions



“As computers become more ubiquitous, it 
seems that knowledge about computers 

and how they work does not. How can we 
address this? Does LinkedIn have a 
perspective on this? Your personal 

thoughts?”

Though there’s still a lot we don’t know about computation, the amount that 
we do know is increasing every day! CS research (theoretical and applied) is 

constantly discovering new things about what’s possible with a computer and 
new algorithms, new applications of existing techniques, etc.   



“If I get an awful grade on the final exam, 
is it possible to still do okay-ish in the class 
(if I've been keeping up with the problem 

sets)?”

I don’t think this is the right question to be asking right now: 1) If you’ve been 
keeping up with the problem sets, there’s no reason to expect that you’ll do 
poorly on the exam, and 2) the final hasn’t happened yet so the outcome is 

still very much in your hands! Instead of thinking of what could happen if the 
exam goes badly, focus your energy on actively targeting your weak spots and 

working to make the exam go well.



“What is the high-level knowledge map for 
math used in CS? PSets do give a glimpse 
into how much math is involved in many 
areas of CS but what is the big picture?”

We saw some specific examples earlier today, here’s a broader overview*

* Huge caveat: this is largely based on which areas of CS I’ve personally been 
exposed to! There’s lots that I don’t have much experience in.



AI

NLP

Compilers

Information 
Theory

Databases

Linear 
Algebra

Automata,
languages

Logic

Number 
Theory

Crypto

Networking
Probability

Functions

Set theory

Graphs
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AI

NLP

Compilers

Information 
Theory

Databases

Linear 
Algebra

Automata,
languages

Logic

Number 
Theory

Crypto

Networking
Probability

Functions

Set theory

Graphs

Math is everywhere in CS :D You 
can choose how deeply you want 
to study the theory side of things

(yay abstractions!)  



“What does doing research in CS look like? 
Like for bench science, we will conduct 
experiments to test an idea. It's hard to 
imagine CS researches as sitting in an 

office and coding all day long.”

Similar process, just different tools! CS research can take many forms: coming up 
with new ways of modeling and predicting phenomena, designing new 

algorithms and proving that they meet certain runtime/space constraints, finding 
new ways of applying CS to other fields (education, healthcare, transportation, …)

Would be happy to connect you to folks here in the department who are doing 
CS research!



“Out of all the CS courses offered at 
Stanford...why CS103? What makes this 

course more compelling to you than 
others?”

:)
We get to take these abstract, complex, philosophical ideas (the nature of 

computation, infinity, truth) and make them accessible and tangible.
As a class in the CS core @ Stanford, CS103 presents the unique opportunity 
to get people excited about computer science from a completely different 

perspective.



Final Thoughts



A Huge Round of Thanks!



There are more problems to
solve than there are programs

capable of solving them.



There is so much more to explore and so 
many big questions to ask – many of 

which haven't been asked yet!



Theory

Practice



You now know what problems we can solve, 
what problems we can't solve, and what 

problems we believe we can't solve 
efficiently.



Our questions to you:

What problems will you choose to solve?

Why do those problems matter to you?

And how are you going to solve them?


