

Week 10 Tutorial
Beyond R and RE

Please evaluate this course on Axess.
Your feedback really makes a difference.

Part 1: Self-Reference

An Undecidable Problem

● A nontrivial language is a language that
isn’t Ø and isn’t Σ*.

● Consider the following language:

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø,
 and (ℒ M) ≠ Σ* }

● This language is undecidable. Our goal is to

prove this is the case.

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

 1. What’s wrong with this
proof?

Submit your answer
on Gradescope.

 1. What’s wrong with this
proof?

Submit your answer
on Gradescope.

Analogy Time!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yes

Nah

Engineering Prowess!

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

Engineering Problem:
Build a TM whose

language isn’t Ø or Σ*.

Engineering Problem:
Build a TM whose

language isn’t Ø or Σ*.

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
 string input = getInput();
 if (input.length() % 2 == 0) {
 accept();
 } else {
 reject();
 }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a

decider, since given any input the machine M will either accept
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*.
Therefore, L is decidable. ■

Engineering Problem:
Build a TM whose

language isn’t Ø or Σ*.

Engineering Problem:
Build a TM whose

language isn’t Ø or Σ*.

Regulatory Problem:
Design a procedure to

test whether a TM
indeed has a language

that isn’t Ø or Σ*.

Regulatory Problem:
Design a procedure to

test whether a TM
indeed has a language

that isn’t Ø or Σ*.

Decider
for L

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

Goal: Use self-reference
to show that this decider

cannot exist.

Goal: Use self-reference
to show that this decider

cannot exist.

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Program P design specification:

If P accepts at least one string and
doesn’t accept at least one string:
 P must accept all strings or
 accept no strings at all.

If P accepts all strings or does
not accept any strings:
 P must accept at least one
 string and not accept at least
 one string.

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Program P design specification:

If P accepts at least one string and
doesn’t accept at least one string:
 P must accept all strings or
 accept no strings at all.

If P accepts all strings or does
not accept any strings:
 P must accept at least one
 string and not accept at least
 one string.

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Program P design specification:

If P accepts at least one string and
doesn’t accept at least one string:
 P must accept all strings or
 accept no strings at all.

If P accepts all strings or does
not accept any strings:
 P must accept at least one
 string and not accept at least
 one string.

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Program P design specification:

If P accepts at least one string and
doesn’t accept at least one string:
 P must accept all strings or
 accept no strings at all.

If P accepts all strings or does
not accept any strings:
 P must accept at least one
 string and not accept at least
 one string.

2. Complete program P.

Submit your answer
on Gradescope.

2. Complete program P.

Submit your answer
on Gradescope.

Decider
for L

Yes, M accepts at least one
string and does not accept at

least one string.

No, M either accepts all
strings or does not accept

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
 string input = getInput();
 string me = mySource();

 if (isNontrivial(me)) {

 } else {

 }
}

Program P design specification:

If P accepts at least one string and
doesn’t accept at least one string:
 P must accept all strings or
 accept no strings at all.

If P accepts all strings or does
not accept any strings:
 P must accept at least one
 string and not accept at least
 one string.

Part 2: The Lava Diagram

 ALL

 ALL REG

 ALL R REG

 ALL RE R REG

 ALL RE R REG

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

 ALL RE R REG

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

3. Place these languages
in the Lava Diagram.

Submit your answer
on Gradescope.

3. Place these languages
in the Lava Diagram.

Submit your answer
on Gradescope.

 ALL RE R REG

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

L₁ = { ⟨M⟩ | M is a TM and M accepts cocoa }

L₂ = { ⟨M⟩ | M is a TM and M rejects cocoa }

L₃ = { ⟨M⟩ | M is a TM and M loops on cocoa }

Thanks for Calling In!

It’s been great meeting you this quarter.
Stay safe, stay healthy, and stay in touch!

Enjoy the break!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

