
  

Week 10 Tutorial
Beyond R and RE



  

Please evaluate this course on Axess.
Your feedback really makes a difference.



  

Part 1: Self-Reference



  

An Undecidable Problem

● A nontrivial language is a language that 
isn’t Ø and isn’t Σ*.

● Consider the following language:

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø,
           and (ℒ M) ≠ Σ* }

 

 
● This language is undecidable. Our goal is to 

prove this is the case.
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(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■

  1. What’s wrong with this
proof?

Submit your answer
on Gradescope.

  1. What’s wrong with this
proof?

Submit your answer
on Gradescope.



  

Analogy Time!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yes

Nah

Engineering Prowess!



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■

Engineering Problem: 
Build a TM whose 

language isn’t Ø or Σ*.

Engineering Problem: 
Build a TM whose 

language isn’t Ø or Σ*.



  

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

(Incorrect!) Theorem: L is decidable.

(Incorrect!) Proof: Let M be a Turing machine whose behavior is
the same as the program given here:

int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}

Notice that (ℒ M) ≠ Ø, since M accepts the string ε, and that 
(ℒ M) ≠ Σ*, since M rejects the string aaa. Moreover, M is a 

decider, since given any input the machine M will either accept 
or reject.

This means that M is a decider, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ*. 
Therefore, L is decidable. ■

Engineering Problem: 
Build a TM whose 

language isn’t Ø or Σ*.

Engineering Problem: 
Build a TM whose 

language isn’t Ø or Σ*.

Regulatory Problem: 
Design a procedure to 

test whether a TM 
indeed has a language 

that isn’t Ø or Σ*.

Regulatory Problem: 
Design a procedure to 

test whether a TM 
indeed has a language 

that isn’t Ø or Σ*.



  

Decider
for L

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.

No, M either accepts all 
strings or does not accept 

any strings.

M

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.

No, M either accepts all 
strings or does not accept 

any strings.

M

bool isNontrivial(string program);

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.

No, M either accepts all 
strings or does not accept 

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.

No, M either accepts all 
strings or does not accept 

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

Goal: Use self-reference 
to show that this decider 

cannot exist.

Goal: Use self-reference 
to show that this decider 

cannot exist.

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }



  

Decider
for L

Yes, M accepts at least one 
string and does not accept at 

least one string.

No, M either accepts all 
strings or does not accept 

any strings.

M

bool isNontrivial(string program);

isNontrivial

program

L = { ⟨M⟩ | M is a TM, (ℒ M) ≠ Ø, and (ℒ M) ≠ Σ* }

// Program P
int main() {
  string input = getInput();
  string me = mySource();
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Thanks for Calling In!

It’s been great meeting you this quarter.
Stay safe, stay healthy, and stay in touch!

Enjoy the break!
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