Week 10 Tutorial Beyond R and RE

Please evaluate this course on Axess. Your feedback really makes a difference.

Part 1: Self-Reference

An Undecidable Problem

- A nontrivial language is a language that isn't \varnothing and isn't Σ^{*}.
- Consider the following language:

$$
\begin{gathered}
L=\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \varnothing \\
\text { and } \left.\mathscr{L}(M) \neq \Sigma^{*}\right\}
\end{gathered}
$$

- This language is undecidable. Our goal is to prove this is the case.

$L=\left\{\langle M\rangle \mid M\right.$ is a TM, $\mathscr{L}(M) \neq \emptyset$, and $\left.\mathscr{L}(M) \neq \Sigma^{*}\right\}$

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \varnothing, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

(Incorrect!) Theorem: L is decidable.

```
L={\langleM\rangle|M is a TM, \mathscr{L}(M)\not=\emptyset, and \mathscr{L}(M)\not=\mp@subsup{\Sigma}{}{*}}
```

(Incorrect!) Theorem: L is decidable.
(Incorrect!) Proof: Let M be a Turing machine whose behavior is the same as the program given here:

```
int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}
```

Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts the string ε, and that $\mathscr{L}(M) \neq \Sigma^{*}$, since M rejects the string aaa. Moreover, M is a decider, since given any input the machine M will either accept or reject.

This means that M is a decider, $\mathscr{L}(M) \neq \varnothing$, and $\mathscr{L}(M) \neq \Sigma^{*}$.
Therefore, L is decidable.

```
L={\langleM\rangle|M is a TM, \mathscr{L}(M)\not=\emptyset, and \mathscr{L}(M)\not=\mp@subsup{\Sigma}{}{*}}
```

(Incorrect!) Theorem: L is decidable.
(Incorrect!) Proof: Let M be a Turing machine whose behavior is the same as the program given here:

```
int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}
```

1. What's wrong with this proof?

Submit your answer on Gradescope.

Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts the string ε, and that $\mathscr{L}(M) \neq \Sigma^{*}$, since M rejects the string aaa. Moreover, M is a decider, since given any input the machine M will either accept or reject.

This means that M is a decider, $\mathscr{L}(M) \neq \varnothing$, and $\mathscr{L}(M) \neq \Sigma^{*}$. Therefore, L is decidable.

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{\times}pollutants.

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{x} pollutants.

Engineering Prowess!

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{\times}pollutants.

Engineering Prowess!

Awesome Engine!

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{\times}pollutants.

Engineering Prowess!

Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a diesel engine, determines whether it emits lots of NO_{x} pollutants.

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{\times}pollutants.

Engineering Prowess!

Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a diesel engine, determines whether it emits lots of NO_{\times}pollutants.

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{\times}pollutants.

Engineering Prowess!

Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a diesel engine, determines whether it emits lots of NO_{x} pollutants.

Engineering Problem: Design a diesel engine that doesn't emit lots of NO_{x} pollutants.

Engineering Prowess!

Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a diesel engine, determines whether it emits lots of NO_{\times}pollutants.


```
L={\langleM\rangle|M is a TM, \mathscr{L}(M)\not=\emptyset, and \mathscr{L}(M)\not=\mp@subsup{\Sigma}{}{*}}
```

(Incorrect!) Theorem: L is decidable.
(Incorrect!) Proof: Let M be a Turing machine whose behavior is the same as the program given here:

```
int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}
```

Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts the string ε, and that $\mathscr{L}(M) \neq \Sigma^{*}$, since M rejects the string aaa. Moreover, M is a decider, since given any input the machine M will either accept or reject.

This means that M is a decider, $\mathscr{L}(M) \neq \varnothing$, and $\mathscr{L}(M) \neq \Sigma^{*}$.
Therefore, L is decidable.

```
L={\langleM\rangle|M is a TM, \mathscr{L}(M)\not=\emptyset, and \mathscr{L}(M)\not=\mp@subsup{\Sigma}{}{*}}
```

(Incorrect!) Theorem: L is decidable.
(Incorrect!) Proof: Let M be a Turing machine whose behavior is the same as the program given here:

```
int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}
```

Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts the string ε, and that $\mathscr{L}(M) \neq \Sigma^{*}$, since M rejects the string aaa. Moreover, M is a decider, since given any input the machine M will either accept or reject.

This means that M is a decider, $\mathscr{L}(M) \neq \varnothing$, and $\mathscr{L}(M) \neq \Sigma^{*}$.
Therefore, L is decidable.
$L=\left\{\langle M\rangle \mid M\right.$ is a TM, $\mathscr{L}(M) \neq \emptyset$, and $\left.\mathscr{L}(M) \neq \Sigma^{*}\right\}$
(Incorrect!) Theorem: L is decidable.
(Incorrect!) Proof: Let M be a Turing machine whose behavior is the same as the program given here:

```
int main() {
    string input = getInput();
    if (input.length() % 2 == 0) {
        accept();
    } else {
        reject();
    }
}
```

Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts Engineering Problem: $\mathscr{L}(M) \neq \Sigma^{*}$, since M rejects the string aa decider since given any input the mach language isn't \varnothing or Σ^{*}. or reject.
This means that M is a decider, $\mathscr{L}(M) \neq \varnothing$, and $\mathscr{L}(M) \neq \Sigma^{*}$.
Therefore, L is decidable.

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \varnothing, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Regulatory Problem:
Design a procedure to test whether a TM indeed has a language that isn't \varnothing or Σ^{*}.

```
int main() {
        accept();
    } else {
        reject();
    }
}
```

 string input = getInput();
 if (input.length() \% 2 == 0) \{
 Notice that $\mathscr{L}(M) \neq \varnothing$, since M accepts t Engineering Problem: Build a TM whose language isn't \varnothing or Σ^{*}.

$L=\left\{\langle M\rangle \mid M\right.$ is a $T M, \mathscr{L}(M) \neq \emptyset$, and $\left.\mathscr{L}(M) \neq \Sigma^{*}\right\}$

Decider for L

$L=\left\{\langle M\rangle \mid M\right.$ is a TM, $\mathscr{L}(M) \neq \emptyset$, and $\left.\mathscr{L}(M) \neq \Sigma^{*}\right\}$


```
L={\langleM\rangle|M is a TM, \mathscr{L}(M)\not=\emptyset, and \mathscr{L}(M)\not=\mp@subsup{\Sigma}{}{*}}
```


$L=\left\{\langle M\rangle \mid M\right.$ is a TM, $\mathscr{L}(M) \neq \emptyset$, and $\left.\mathscr{L}(M) \neq \Sigma^{*}\right\}$

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \varnothing, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \varnothing, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

Goal: Use self-reference to show that this decider cannot exist.

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

```
// Program P
int main() {
    string input = getInput();
```

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

```
// Program P
int main() {
    string input = getInput();
    string me = mySource();
```

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

```
// Program P
int main() {
    string input = getInput();
    string me = mySource();
    if (isNontrivial(me)) {
    } else {
    }
}
```

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);
// Program P
\} else \{
\}

Program P design specification:

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

Program P design specification:

If P accepts at least one string and doesn't accept at least one string:

If P accepts all strings or does not accept any strings:

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

Program P design specification:

If P accepts at least one string and doesn't accept at least one string: P must accept all strings or accept no strings at all.

If P accepts all strings or does not accept any strings:
P must accept at least one string and not accept at least one string.

$$
L=\left\{\langle M\rangle \mid M \text { is a } \mathrm{TM}, \mathscr{L}(M) \neq \varnothing, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

Program P design specification:

If P accepts at least one string and doesn't accept at least one string: P must accept all strings or accept no strings at all.

If P accepts all strings or does not accept any strings:
P must accept at least one string and not accept at least one string.

$$
L=\left\{\langle M\rangle \mid M \text { is a TM, } \mathscr{L}(M) \neq \emptyset, \text { and } \mathscr{L}(M) \neq \Sigma^{*}\right\}
$$

Yes, M accepts at least one string and does not accept at least one string.

No, M either accepts all strings or does not accept any strings.
bool isNontrivial(string program);

Program P design specification:

If P accepts at least one string and doesn't accept at least one string: P must accept all strings or accept no strings at all.

If P accepts all strings or does not accept any strings:
P must accept at least one string and not accept at least one string.

Part 2: The Lava Diagram

$L_{1}=\{\langle M\rangle \mid M$ is a TM and M accepts cocoa $\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and M rejects cocoa $\}$
$L_{3}=\{\langle M\rangle \mid M$ is a TM and M loops on cocoa $\}$

$L_{1}=\{\langle M\rangle \mid M$ is a TM and M accepts cocoa $\}$ $L_{2}=\{\langle M\rangle \mid M$ is a TM and M rejects cocoa $\}$ $L_{3}=\{\langle M\rangle \mid M$ is a TM and M loops on cocoa $\}$
3. Place these languages in the Lava Diagram.
Submit your answer on Gradescope.

$L_{1}=\{\langle M\rangle \mid M$ is a TM and M accepts cocoa $\}$
$L_{2}=\{\langle M\rangle \mid M$ is a TM and M rejects cocoa $\}$
$L_{3}=\{\langle M\rangle \mid M$ is a TM and M loops on cocoa $\}$

Thanks for Calling In!

It's been great meeting you this quarter. Stay safe, stay healthy, and stay in touch!

Enjoy the break!

