
  

Week 2 Tutorial
Set Theory and Proofwriting



  

Outline for Today

● Tutorial Logistics
● Welcome! How do these work?

● Set Theory Review
● Making sense of a scramble of symbols.

● Proofs on Set Theory
● How to go from a theorem to a proof.

● Words of Caution (ITA)
● How not to write a set theory proof. 



  

General Logistics
● Welcome to your first tutorial session! Here’s 

what to expect each week.
● Tutorials are one-hour sessions every week.
● It’s best if you choose the same session week to week, 

but this is not required.
● We will record one session per week. If you’re unable 

to attend any tutorials, you may make up the exercises 
by Friday at noon Pacific time. 

● You must attend or make up at least 7/9 tutorials for 
an A, at least 6/9 for a B, etc. (See the Course 
Information handout for more details.)

● Attending and making up are equivalent as far as 
grade calculations.



  

Tutorial Format
● We’ll be walking through some problems 

designed to solidify the concepts covered in 
this week’s assignment. 

● These will focus on problem-solving 
techniques rather than teaching new 
content, so the expectation is that you’re 
caught up on lectures!

● We’ll periodically split off into breakout 
rooms, where you’ll get a chance to discuss in 
smaller groups. 



  

Tutorial Exercises
● Each tutorial has a corresponding 

assignment in Gradescope consisting of a 
few short answer questions. 

● During the live tutorial sessions, we’ll 
complete these questions together.

● If you are making up a tutorial, you will 
be responsible for watching the recording 
and submitting answers for the exercises 
on your own.



  

Things to Do Right Now
● On Zoom, press the “Participants” button. You 

should see these nine icons:

 

 

 
● The bottom row may be under the “More…” 

option.
● We’ll ask you to use these icons for informal 

polling. To test it, let’s have everyone press 
the “coffee mug” icon.”



  

Things to Do Right Now
● Go to Gradescope (www.gradescope.com) 

and pull up “Tutorial Exercises Week 2.”
● You’ll need this to be able to submit your 

answers as we go.
● Go to Canvas, select “Files,” choose 

“Tutorial Sessions,” then pick “Tutorial 
Week 2 Slides.pdf.”
● This will help you follow along and will be 

necessary for breakout sessions.
● Once you’re done, react with      .✓

http://www.gradescope.com/


  

Introduction:
How to Approach CS103



  

Mental Traps to Avoid



  

● “Everyone else has been doing math since 
before they were born and there is no way I'll 
ever be as good as them.”

● “A small minority of people are math geniuses 
and everyone else has no chance at being 
good at math.”

● “Being good at math means being able to 
instantly solve any math problem thrown at 
you.”
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“A little slope makes up for a lot of y-intercept.”
   - John Ousterhout   

     



  

Suppose you improve at some skill at a rate 
of 1% per day. How much better at that skill 

will you be by the end of the year?

After one day, you're 1.01 times better.
After two days, you're (1.01)2 times better.

After one year, you'll be (1.01)365 ≈ 37.8 
times better! 

Fun Math Question
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Pro Tip:

Avoid an Ingroup/Outgroup Mindset



  

● “Everyone else has been doing math since 
before they were born and there is no way I'll 
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● Math is often driven by seemingly simple problems that no one 
knows the answer to. 

● Example: the integer brick problem:

Is there a rectangular brick where all lines connecting 
two corners have integer length?

● Having open problems like these drives the field forward – it 
motivates people to find new discoveries and to invent new 
techniques. 

Simple Open Problems

 

 ?



 

Getting Good at Math
● It is perfectly normal to get stuck or be confused 
when learning math. 

● Engage with the concepts. Work through lots of 
practice problems. Play around with new terms 
and definitions on your own time to see how they 
work.

● Ask for help when you need it. We're here to 
help you. We want you to succeed, so let us know 
what we can do to help!

● Work in groups. Get help from your problem set 
partner, the TAs, and your tutorial session 
buddies.



  

Set Theory Warmup



  

1. Answer each of the following questions:
a) Which pairs of the above sets, if any, are equal to one another?
b) Is D ∈ A? Is D ⊆ A?
c) What is A ∩ C? How about A ∪ C? How about A Δ C?
d) What is A – C? How about {A – C}? Are those sets equal?
e) What is |B|? What is |E|? What is |F|?
f) What is E – A? Express your answer in set-builder notation.
g) Is 0 ∈ E? Is 0 ∈ F?

Fill in answer on Gradescope!

1. Answer each of the following questions:
a) Which pairs of the above sets, if any, are equal to one another?
b) Is D ∈ A? Is D ⊆ A?
c) What is A ∩ C? How about A ∪ C? How about A Δ C?
d) What is A – C? How about {A – C}? Are those sets equal?
e) What is |B|? What is |E|? What is |F|?
f) What is E – A? Express your answer in set-builder notation.
g) Is 0 ∈ E? Is 0 ∈ F?

Fill in answer on Gradescope!

Consider the following sets: 

A = { 0, 1, 2, 3, 4 }
B = { 2, 2, 2, 1, 4, 0, 3 }
C = { 1, {2}, {{3, 4}} }
D = { 1, 3 }
E = ℕ
F = { ℕ }



  

Proofs on Sets



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.
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What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).

Definition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T (or both)

 

If you know that x ∈ S ∪ T:
    You can conclude that x ∈ S or that x ∈ T (or both).
 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T (or both).

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.
 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.
 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

Let’s Draw Some Pictures!



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

  

A

Let’s Draw Some Pictures!



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

  

A B

Let’s Draw Some Pictures!



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

  

A B

Let’s Draw Some Pictures!



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

  

A B

C

Let’s Draw Some Pictures!



  

Theorem: For any sets A, B, and C,
if A ∪ B ⊆ C, then A ⊆ C.

  

A B

C

Let’s Draw Some Pictures!



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C. Want to 

show A ⊆ C.

Want to 
show A ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C. Want to 

show A ⊆ C.

Want to 
show A ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C. Want to 

show A ⊆ C.

Want to 
show A ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. [...]



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. [...]

Want to 
show A ⊆ C.

Want to 
show A ⊆ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. [...]

Want to 
show A ⊆ C.

Want to 
show A ⊆ C.

2. What is the general 
pattern for proving a 

statement
of the form S ⊆ T?

 

Fill in answer on Gradescope!

2. What is the general 
pattern for proving a 

statement
of the form S ⊆ T?

 

Fill in answer on Gradescope!



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

Want to 
show A ⊆ C.

Want to 
show A ⊆ C.

2. What is the general 
pattern for proving a 

statement
of the form S ⊆ T?

 

Fill in answer on Gradescope!

2. What is the general 
pattern for proving a 

statement
of the form S ⊆ T?

 

Fill in answer on Gradescope!



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C. Assume

A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C. Want to 

show A ⊆ C.

Want to 
show A ⊆ C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.



  

For any sets A, B, and C, if A ∪ B ⊆ C, then A ⊆ C.

Pick any sets
A, B, and C.

Pick any sets
A, B, and C.

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

Assume
A ∪ B ⊆ C.

Assume
A ∪ B ⊆ C. Want to 

show A ⊆ C.

Want to 
show A ⊆ C.



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A
                    BA                    

C



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A

A ⊆ C
 

x ∈ C
                    BA                    

C



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A

A ⊆ C
                     BA                    

C



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A

A ⊆ C
                     BA                    

C



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A

A ⊆ C
 

x ∈ C
                    BA                    

C



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.

What I’m Assuming What I Need to Prove

A ∪ B ⊆ C
 

x ∈ A

A ⊆ C
 

x ∈ C
                    BA                    

C

x



  

Theorem: For any sets A, B, and C, if A ∪ B ⊆ C,
then A ⊆ C.

Proof: Let A, B, and C be sets where A ∪ B ⊆ C.
We want to show that A ⊆ C. To do so, pick an
x ∈ A. We will show that x ∈ C.
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then
C ⊆ A or C ⊆ B (or both).
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 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets 
A, B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■
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This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■

3. What’s wrong with this proof?

Fill in answer on Gradescope!

3. What’s wrong with this proof?

Fill in answer on Gradescope!
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then
C ⊆ A or C ⊆ B (or both).

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets 
A, B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then
C ⊆ A or C ⊆ B (or both).

This is just repeating definitions and 
not making specific claims about 

specific variables. 

This is just repeating definitions and 
not making specific claims about 

specific variables. 

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets 
A, B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then
C ⊆ A or C ⊆ B (or both).

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets 
A, B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■

Why is this bad?Why is this bad?
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then
C ⊆ A or C ⊆ B (or both).

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets 
A, B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■

Did we cover every possible case?Did we cover every possible case?
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Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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A

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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A B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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A B

A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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A ∪ B

Recall the intuition of a 
subset being “something I 

can circle”

Recall the intuition of a 
subset being “something I 

can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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Recall the intuition of a 
subset being “something I 

can circle”

Recall the intuition of a 
subset being “something I 

can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).

A

So C ⊆ A would mean 
that C is something I can 
circle in this region. 

So C ⊆ A would mean 
that C is something I can 
circle in this region. 

C
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Recall the intuition of a 
subset being “something I 

can circle”

Recall the intuition of a 
subset being “something I 

can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).

Likewise, C ⊆ B would 
mean that C is 

something I can circle 
in this region. 

Likewise, C ⊆ B would 
mean that C is 

something I can circle 
in this region. 

B

C
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A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).
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A ∪ B

But when I look at A∪B, I can draw 
C as a circle containing elements 

from both A and B 

But when I look at A∪B, I can draw 
C as a circle containing elements 

from both A and B 

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).

C
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A ∪ B

But when I look at A∪B, I can draw 
C as a circle containing elements 

from both A and B 

But when I look at A∪B, I can draw 
C as a circle containing elements 

from both A and B 

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).

Do you see why this 
circle is in neither A nor 

B? 

Do you see why this 
circle is in neither A nor 

B? 
C
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A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then

C ⊆ A or C ⊆ B (or both).

C

4. Using this visual intuition, come up with a 
counterexample to this claim and write it up 

as a disproof. 
Fill in answer on Gradescope!

4. Using this visual intuition, come up with a 
counterexample to this claim and write it up 

as a disproof. 
Fill in answer on Gradescope!
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Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

A

1
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

A

1

B

2

Slides by Amy Liu



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

A

1

B

2

C
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

A

1

B

2

C
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊆[ A because 2 ∈ C 
but 2 ∉ A 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

A

1

B

2

C
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊆[ A because 2 ∈ C 
but 2 ∉ A, and C ⊆[ B because 1 ∈ C but 1 ∉ B.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).

1

B

2

A

C
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Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊆[ A and C ⊆[ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊆) A because 2 ∈ C 
but 2 ∉ A, and C ⊆[ B because 1 ∈ C but 1 ∉ B. 

Thus we’ve found a set C which is a subset of A ∪ B but 
is not a subset of either A or B, which is what we needed 
to show. ■ 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A
or C ⊆ B (or both).
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Proofwriting Advice

● Be very wary of proofs that speak generally 
about “all objects” of a particular type.
● As you’ve just seen, it’s easy to 

accidentally prove a false statement at 
this level of detail.

● Making broad, high-level claims often 
indicates deeper logic errors or 
conceptual misunderstanding (like code 
smell but for proofs!) 



  

Proofwriting Advice

● Good Idea: After you’ve written a draft 
of a proof, run through all of the points 
on the Proofwriting Checklist.
● This is a great exercise that you can 

do with a partner!
● In particular, focus on items like “make 

specific claims about specific variables” 
and “scope and properly introduce your 
variables.”



  

Proofwriting Strategies

● Articulate a Clear Start and End Point
● What are you assuming? What are you trying to 

prove?
● Much of this can be determined from the structure 

of the theorem to prove.
● Write Down Relevant Terms and 

Definitions
● The interplay of definitions, intuitions, and 

conventions gets you your final answer. Knowing 
the definitions is the first step!



  

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.
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