
  

Week 4 Tutorial
Binary Relations and Functions

Adapted from slides created by Amy Liu.



  

Part 1: Binary Relations Warmup



  

Let ℝ2 denote the set of all ordered pairs of real numbers. For 
example (137, 42) ∈ ℝ2, (π, e) ∈ ℝ2, and (-2.71, 103) ∈ ℝ2. 

Two ordered pairs are equal if and only if each of their 
components are equal. That is, we have (a, b) = (c, d) if and 
only if a = c and b = d.
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(x₁, y₁) E (x₂, y₂)     if     ∃k ∈ ℝ. (k ≠ 0 ∧ (kx₁, ky₁) = (x₂, y₂)).

For example, (3, 4) E (6, 8) because (2 · 3, 2 · 4) = (6, 8).
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Let ℝ2 denote the set of all ordered pairs of real numbers. For 
example (137, 42) ∈ ℝ2, (π, e) ∈ ℝ2, and (-2.71, 103) ∈ ℝ2. 

Two ordered pairs are equal if and only if each of their 
components are equal. That is, we have (a, b) = (c, d) if and 
only if a = c and b = d.

Now, consider the relation E over ℝ2 defined as follows:

(x₁, y₁) E (x₂, y₂)     if     ∃k ∈ ℝ. (k ≠ 0 ∧ (kx₁, ky₁) = (x₂, y₂)).

For example, (3, 4) E (6, 8) because (2 · 3, 2 · 4) = (6, 8).

  1. Complete the set-up for the proof that E is an               
  equivalence relation by filling in the “assume” and           
  “want to show” statements to prove that E is reflexive,    
  symmetric, and transitive. For example:

    Assume: (assumption for the reflexive part) 
    Want to show: (“want to show” for the reflexive part)

  You should have 6 statements in total.  

Fill in answer on Gradescope!
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We want to show each pair of real 
numbers relates to itself.
 

Pick an arbitrary x ∈ ℝ2.
We want to show that xEx.
 

Pick an arbitrary x, y ∈ ℝ2.
We want to show that (x, y)E(x, y).
 

Pick an arbitrary (x, y) ∈ ℝ2.
We want to show that (x, y)E(x, y).
 

Pick an arbitrary x, y ∈ ℝ.
We want to show that (x, y)E(x, y).
 

Pick an arbitrary (x, y) ∈ ℝ.
We want to show that (x, y)E(x, y).



  

Fun fact: this binary relation is related to a 
concept called homogeneous 

coordinates that’s used extensively in 
computer graphics.

Take CS148 for more details!



  

Part 2: More Binary Relations 



  

Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y        if        yRx
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Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:
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relation over A, then R-1 is an equivalence relation over A.
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Assume: 

Pick an arbitrary relation R over a set A and assume 
it’s an equivalence relation.

Want to Show: 

We want to show that R-1 is also an equivalence 
relation over A. 

Let R be a binary relation over a set A. We can define a 
new relation over A called the inverse relation of R, 
denoted R-1, as follows:

xR-1y        if        yRx

  Prove the following theorem: if R is an equivalence 
relation over A, then R-1 is an equivalence relation over A.



  

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Assume Want to Show

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.
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is an equivalence relation over A.

R is an equivalence 
relation
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is an equivalence relation over A.
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R is an equivalence 
relation

R-1 is an equivalence 
relation
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R is an equivalence 
relation

R-1 is an equivalence 
relation

  2b) Expand out both the Assume and the Want to Show one   
  step further using the definition of an equivalence relation. 
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Assume Want to Show

Relevant Definitions

xR-1y  if  yRx

R is an equivalence 
relation

R-1 is an equivalence 
relation

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Assume Want to Show

Relevant Definitions

xR-1y  if  yRx

R is an equivalence 
relation
• R is reflexive
• R is symmetric
• R is transitive

R-1 is an equivalence 
relation

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Assume Want to Show

Relevant Definitions

xR-1y  if  yRx

R is an equivalence 
relation
• R is reflexive
• R is symmetric
• R is transitive

R-1 is an equivalence 
relation
• R-1 is reflexive
• R-1 is symmetric
• R-1 is transitive

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

A great proofwriting strategy is to 
draw pictures – it’s often easier to 
reason about concrete circles, lines, and 

arrows than abstract mathematical 
definitions. 

A great proofwriting strategy is to 
draw pictures – it’s often easier to 
reason about concrete circles, lines, and 

arrows than abstract mathematical 
definitions. 

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

x y x y

We’ll use a red arrow 
to denote that xRy

And a blue arrow to 
denote that xR-1y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R is reflexive
∀x ∈ A. xRx

x

We can always 
draw a red self-
loop

Assume:

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R is reflexive
∀x ∈ A. xRx

x

We can always 
draw a red self-
loop

Assume:

R is symmetric
∀x ∈ A. ∀y ∈ A. 
(xRy → yRx)

If there’s a red 
arrow in one 
direction, we can 
draw one in the 
other direction

x y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R is reflexive
∀x ∈ A. xRx

x

We can always 
draw a red self-
loop

Assume:

R is symmetric
∀x ∈ A. ∀y ∈ A. 
(xRy → yRx)

If there’s a red 
arrow in one 
direction, we can 
draw one in the 
other direction

x y

R is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xRy ∧ yRz → xRz)

x

y

z

If you can get 
somewhere by 
following red arrows, 
you can draw a red 
arrow directly there

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

xR-1y  if  yRx

When can we draw a blue arrow? 

x y

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

xR-1y  if  yRx

When can we draw a blue arrow? 

x y

If there’s a red 
arrow going one way

Then we can draw a 
blue arrow going the 
other way

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive
∀x ∈ A. xR-1x

Want to Show:

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive
∀x ∈ A. xR-1x

x

Want to Show:

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive
∀x ∈ A. xR-1x

x We want to always be 
able to draw a blue 
self-loop

Want to Show:

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive
∀x ∈ A. xR-1x

x We want to always be 
able to draw a blue 
self-loop

Want to Show:

Since we assumed R is 
reflexive, we can put in 
this red self loop

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive
∀x ∈ A. xR-1x

x

Since there’s a red arrow 
going from x to x, we 
can draw a blue arrow 
going “the other way”, 
from x to x

Want to Show:

Since we assumed R is 
reflexive, we can put in 
this red self loop

R R-1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

We want to say that 
if there’s a blue 
arrow in one 
direction, we can 
draw one in the 
other direction

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

So we’ll assume this 
arrow exists

And prove that this 
arrow exists too

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

So we’ll assume this 
arrow exists

And prove that this 
arrow exists too

Remember that you 
can apply this 

definition

xR-1y  if  yRx

in the other 
direction too

Remember that you 
can apply this 

definition

xR-1y  if  yRx

in the other 
direction too

  2c) Fill in the missing  
  steps for the proof      
  that R-1 is symmetric.  
 

Fill in answer on 
Gradescope!

  2c) Fill in the missing  
  steps for the proof      
  that R-1 is symmetric.  
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Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

Want to Show:

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

Since there’s a blue 
arrow from x to y, 
we can draw a red 
arrow going the 
other way, from y to 
x 

xR-1y  if  yRx

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

Since R is symmetric, 
we can use this arrow 
to draw a red arrow 
from x to y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is symmetric
∀x ∈ A. ∀y ∈ A. 
(xR-1y → yR-1x)

x y

xR-1y  if  yRx

Finally, since we have a red arrow from x to 
y, we can apply the definition of R-1 again 
to conclude that there’s a blue arrow from 
y to x 

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

We want to say that if we 
can get from x to z 
through an intermediary y, 
then we can draw an 
arrow straight from x to 
z

y

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

So we’ll assume that these arrows 
exist

y

And prove that this 
arrow exists too

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

So we’ll assume that these arrows 
exist

y

And prove that this 
arrow exists too

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

 2d)  Fill in the missing 
  steps for the proof      
  that R-1 is transitive.  
 

Fill in answer on 
Gradescope!

 2d)  Fill in the missing 
  steps for the proof      
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Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

y

We can apply the 
definition of R-1 to 
draw these two red 
arrows

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Then since R is 
transitive, we can draw 
this arrow

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R R-1

R-1 is transitive
∀x ∈ A. ∀y ∈ A. ∀z ∈ A. 
(xR-1y ∧ yR-1z → xR-1z)

x z

y

Applying the definition of 
R-1 again gives us the 
arrow we desire! 

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.

Want to Show:



  

R-1 is reflexive

x

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x1

xRx 
(R is reflexive)

1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

xR-1y 
(by assumption)

11

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

1

2

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

1

2

3

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

4

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1

2

3

4

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is transitiveR-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

4

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1

2

3

4

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is transitive

x z

y

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

4

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1

2

3

4

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is transitive

x z

y

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

4

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1 1

1

2

3

4

xR-1y and yR-1z
(by assumption)

1

Theorem: if R is an equivalence relation over A, then R-1 
is an equivalence relation over A.



  

R-1 is transitive

x z

y

R-1 is reflexive

x

R-1 is symmetric

x y1

xRx 
(R is reflexive)

xR-1x 
(definition of R-1)

2

1

2

1

2

3

4

xR-1y 
(by assumption)

yRx  
(definition of R-1)

1

2

xRy  
(R is symmetric)

3

yR-1x  
(definition of R-1)

4

1 1
22

1

2

3

4

xR-1y and yR-1z
(by assumption)
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Theorem: If R is an equivalence relation over A, then R-1 is an
equivalence relation over A.

Proof: Let R be an equivalence relation over a set A. We want to
show that R-1 is also an equivalence relation over A by 
proving that R-1 is reflexive, symmetric, and transitive.

 

To prove that R-1 is reflexive, consider any x ∈ A. We want to 
show that xR-1x. By definition, this means that we want to 
show that xRx. And since R is reflexive, we know xRx holds.

 

To prove that R-1 is symmetric, consider any x, y ∈ A where 
xR-1y. We want to show that yR-1x holds. Since xR-1y holds, 
we know that yRx holds. Since R is symmetric and yRx is true, 
we know that xRy is true. Therefore by definition of R-1, we 
know that yR-1x holds.

 

Finally, to prove that R-1 is transitive, consider any x, y, z ∈ A
where xR-1y and yR-1z. We want to show that xR-1z. Since 
xR-1y and yR-1z, we know that yRx and that zRy. Since zRy 
and yRx, by transitivity of R we see that zRx. Thus by
definition of R-1, we know that xR-1z holds, as required. ■
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A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

Assume: 

Let f : A → A be an involution. 

Want to Show: 

We want to show that f is a bijection by proving that 
it’s both injective and surjective.

     Injectivity:

      Assume: Pick a1, a2 ∈ A where f(a1) = f(a2)
      Want to Show: a1 = a2

      Surjectivity:

      Assume: Pick an element b ∈ A.
      Want to Show: There exists an a ∈ A such that f(a) = b
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for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

a₁



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

a₁

a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

f(a₁)

a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

f(a₁)

a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

f(a₁)

a₂

f(a₂)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

a₁

f(a₁)

a₂

f(a₂)

Prove that a =₁ a₂Prove that a =₁ a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

Pick arbitrary a  ₁
and a₂ from the 

domain 

Pick arbitrary a  ₁
and a₂ from the 

domain 

Assume that 
f(a )=f(₁ a ) ₂

Assume that 
f(a )=f(₁ a ) ₂

Prove that a =₁ a₂Prove that a =₁ a₂

a₁

f(a₁)

a₂

f(a₂)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

f(a₂)f(a₁)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

f(a₂)f(a₁)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

f(a₂)f(a₁)

f(f(a₁)) f(f(a₂))



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

Part 1: Injectivity

f(a₂)f(a₁)

a₁ a₂



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

Pick arbitrary b 
from the 

codomain (A) 

Pick arbitrary b 
from the 

codomain (A) 



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

Pick arbitrary b 
from the 

codomain (A) 

Pick arbitrary b 
from the 

codomain (A) 

Prove that there 
exists an a in 
the domain (A) 
that maps to b

Prove that there 
exists an a in 
the domain (A) 
that maps to b



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)

f(f(b))



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)

f(f(b))



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)

f(f(b))

a



  

A function f : A → A is called an involution if f(f(x)) = x 
for all x ∈ A. Prove that if f is an involution, then f is a 
bijection.

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's at least one input that produces it”)

Part 2: Surjectivity

b

f(b)

f(a)

a



  

Theorem: If f : A → A is an involution, then f is a bijection.

Proof: Let f : A → A be an involution. We want to show that f is a 
bijection by proving that it's both injective and surjective.

 

To prove that f is injective, consider any arbitrary a1, a2 ∈ A 
where f(a1) = f(a2). We want to show that a1 = a2. To see this, 
start with f(a1) = f(a2) and apply f to both sides of this equality. 
This tells us that f(f(a1)) = f(f(a2)). Since f is an involution, we 
know that f(f(a1)) = a1 and also that f(f(a2)) = a2, so we 
conclude that a1 = a2, as required.

 

To prove that f is surjective, consider any b ∈ A. We want to 
show that there is some a ∈ A such that f(a) = b. To do so, 
let a = f(b). Then, since f is an involution, we see that 
f(a) = f(f(b)) = b, as required. ■
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Which parts of this 
proof don’t work if f 
is not an involution?

Which parts of this 
proof don’t work if f 
is not an involution?



  

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.
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