
  

Week 5 Tutorial
Graphs and the Pigeonhole Principle



  

Check-In Form:
https://forms.gle/PupBWQXJybWvR15s9

https://forms.gle/PupBWQXJybWvR15s9


  

Part One: The Pigeonhole Principle
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Question: How many non-attacking kings 
can you place on an 8 × 8 chessboard?
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Theorem: In any arrangement of seventeen or 
more kings on an 8 × 8 chessboard, at least two 

of the kings attack one another.
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Using the Pigeonhole Principle

● Step One: Define your m pigeons.

● What are the objects you’ll be distributing?
● Step Two: Define your n pigeonholes.

● What are the bins you’ll place them in?
● Step Three: Get a collision.

● Argue that m > n, then invoke the pigeonhole 
principle to get two items in the same box.

● Step Four: Explain why it matters.

● This is specific to the problem at hand.
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 1. We don’t yet know what our bins will be. What is
the largest number of bins we can have where the
pigeonhole principle applies, given that we have
seventeen objects to distribute?
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Theorem: In any arrangement of seventeen or more kings
on an 8 × 8 chessboard, at least two of the kings attack
one another.

Proof: Consider any such arrangement of kings. Subdivide
the 8 × 8 chessboard into sixteen 2 × 2 square blocks, 
as shown here: 

 

 

 

Since there are 17 kings and 16 blocks, by the pigeonhole 
principle there must be some block that contains at least 
two kings. These kings are then either adjacent 
horizontally, adjacent vertically, or adjacent diagonally. 
Therefore, they attack one another, as required. ■



  

Part Two: Graph Theory Warmup
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∀u ∈ V. ∀v ∈ V. {u, v} ∉ E
(a)
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(b)



  

∀u ∈ V. ∃v ∈ V. ({u, v} ∈ E ∧ 
    ∀w ∈ V. (w ≠ v → {u, w} ∉ E)
)

(c)



  

Part Three: Graph Theory
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Theorem: If I is an independent set of a graph G = (V, E),
then V – I is a vertex cover of G.

Proof: Let G = (V, E) be a graph and I ⊆ V be an
independent set of G. We want to show that V – I is a
vertex cover of G. To do so, pick any u, v ∈ V such that
{u, v} ∈ E. We will show that u ∈ V – I or that v ∈ V – I.

Suppose for the sake of contradiction that u ∉ V – I and 
that v ∉ V – I. We already know that u ∈ V and that v ∈ V, 
so from u ∉ V – I and v ∉ V – I we learn that u ∈ I and 
v ∈ I. That in turn tells us that {u, v} ∉ E, since by 
assumption I is an independent set. This contradicts the 
fact that {u, v} ∈ E.

We have reached a contradiction, so our assumption 
must have been wrong. Therefore, we see that u ∈ V – I 
or that v ∈ V – I, which is what we needed to prove. ■



  

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.
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