
  

Week 6 Tutorial
Induction



  

Announcements
● Reminder that the first round of revisions for Midterm Exam 2 

are due Sunday noon PDT.
● We’re holding extra office hours specifically to talk about 

the exam. Check the course calendar for details.
● We’re creating videos to offer advice on each of the 

problems. Please watch this videos before stopping by 
our office hours; they cover the most common errors we 
saw in each problem.

● Please ensure that you’re reading the feedback from TAs on 
your problem sets.
● Many of the mistakes we saw on the exam were similar to 

errors we see on the problem sets.
● It’s hard to improve a skill if you don’t get any external 

feedback!



  

Part 1: An Induction Game!



  

Rules
● Start with a pile of n coins for some n ≥ 0 
● Players take turns removing between 1 and 5 coins 

from the pile.
● The player who has no more coins to remove loses 

the game.
● Interestingly, if the pile begins with a multiple of 6 

coins in it, the second player can always win if they 
play correctly – give it a try! 



  

Rules
● Start with a pile of n coins for some n ≥ 0 
● Players take turns removing between 1 and 5 coins 

from the pile.
● The player who has no more coins to remove loses 

the game.
● Interestingly, if the pile begins with a multiple of 6 

coins in it, the second player can always win if they 
play correctly – give it a try! 

  1a) Play a few rounds of this game and describe    
  the winning strategy for the second player.
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What’s the strategy?



  

● If it’s the first player’s turn and there are no coins left, then 
the second player wins

If we start with 6 coins, player 1 has to remove some but not 
all of the coins. Then player 2 can remove the remaining 
coins, leaving us in a known winning state. 

What happens when there are 12 coins? Player 1 removes 
some coins, but then player 2 can remove the right number of 
coins to leave 6 remaining. It’s player 1’s turn again and 
there are 6 coins, again a known winning state. 

Some Observations

Player 2Player 1
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Strategy: The second player can win by 
making the total number of coins removed 
by their move and the first player’s move 

come out to 6.
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For all games where the number of coins is a 
multiple of 6, the second player can always win 
if they play correctly.

  1b) Answer the following questions: 
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● What is the step size?
● Is P(n) universally or existentially quantified? 

Based on that, should we build up or build 
down? 
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For all games where the number of coins is a 
multiple of 6, the second player can always win 
if they play correctly.

What is P(n)?

Let P(n) be the statement “if the game is played with the pile containing n 
coins, the second player can always win if she plays correctly.”

What is the base case?

The base case is n=0, the simplest possible case of the game is when you 
start with no coins. 

What is the step size?

We want to show the result is true for multiples of 6, so we’ll take steps of 
size 6.  

Is P(n) universally or existentially quantified? Based on that, should we 
build up or build down?

P(n) is universally quantified, so we should build down (start with a game 
of size k+6 and figure out how to reduce it to a game of size k)



  

What’s wrong with this proof?



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “if the game is played 
with the pile containing n coins, the second player can always win if she 
plays correctly.” We will prove by induction that P(n) holds for all natural 
numbers n that are multiples of 6, from which the theorem follows.

As a base case, we will prove P(0), that if the game is played with a pile 
containing 0 coins, the second player always can win. This is true 
because there are no coins in the pile, so no matter what the second 
player does, she'll win because the first player loses.

For the inductive step, we will prove that if P(k), then P(k + 6): that is, 
the second player can always win in a game with k+6 coins if she plays 
correctly.

Suppose the game starts with k coins. By the inductive hypothesis, this 
means that the second player can force a win in this situation. Now we 
can turn this into a game of size k+6 by adding 6 coins and a turn where 
the first player removes some number c coins from the pile (where 
1 ≤ c ≤ 5) and a turn where the second player removes 6–c coins. 
Consequently, P(k) → P(k+6), completing the induction. ■ 

  1c) What’s wrong with this proof? Try to identify 
three errors the proof makes. 

Fill in answer on Gradescope!
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writing an assumption or introducing 
variables, you need to do so using a 
declarative verb (“assume”, “pick”, 

“choose”, etc.) 
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Proof: Let P(n) be the statement “if the game is played with the pile
containing n coins, the second player can always win if she plays
correctly.” We will prove by induction that P(n) holds for all natural
numbers n that are multiples of 6, from which the theorem follows.

As a base case, we will prove P(0), that if the game is played with a 
pile containing 0 coins, the second player always can win. This is 
true because there are no coins in the pile, so no matter what the 
second player does, she'll win because the first player loses.

For the inductive step, assume for some arbitrary k ∈ ℕ where k is 
a multiple of 6 that P(k) is true and if the game is played with k 
coins, the second player can always win if she plays correctly. We 
will prove that P(k + 6) holds: that is, the second player can always 
win in a game with k + 6 coins if she plays correctly.

Suppose the game starts with k+6 coins. The first player's removes 
some number c coins from the pile, where 1 ≤ c ≤ 5. This leaves 
k+6–c coins remaining. Now, the second player removes 6–c coins. 
This leaves a total of k+6–c–(6–c) = k coins, and it's now the first 
player's turn again. By the inductive hypothesis, this means that 
the second player can force a win in this situation, so the second 
player will eventually win the game. Consequently, starting with 
k+6 coins, the second player can win, so P(k+6) holds, completing 
the induction. ■ 



  

Part 2: How Not to Induct



  

All Horses are the Same Color

P(n) = “All groups of n horses always 
have the same color”



  

Base case: n = 0 

All Horses are the Same Color

P(0) = “All groups of 0 horses always 
have the same color”

Vacuously true!
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All Horses are the Same Color
Assume P(k) = “All groups of k horses 
always have the same color”
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And we said that both horses on the ends are 
the same color as these overlapping horses



  
Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

So all k+1 horses have the same color!



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the first k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the first horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the first horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the first horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■

  2) What’s wrong with this proof?

Fill in answer on Gradescope!
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All Horses are the Same Color

P(1) → P(2)

P(n) = “All groups of n horses always 
have the same color”

These horses in the middle (??) were in both sets



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.
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the same color. Thus P(k+1) holds, completing the induction. ■

The logic in our inductive step does 
not allow us to get from P(1) to 
P(2). Specifically, there are no 

non-excluded horses that were in 
both sets.
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Non-Issues with this Proof

● “We should have proven additional base cases” 
● A proof by induction only needs a single base 

case, so the fact that we only have one here 
is not in itself an issue. 

● “We should have used complete induction” 
● Complete induction wouldn’t have helped us 

here either, since our inductive step would 
still need to use P(0) and P(1) to prove P(2).



  

Induction Debugging Tips

● Remember that induction requires two parts: the 
base case and the inductive step 

● If you see an induction proof of a false statement, 
one of these pieces must be broken

● Recommendation: try playing the induction out 
one step at a time (Is the base case true? From 
the base case, does the reasoning in your 
inductive step allow you to conclude the next 
statement? What about the following statement? 
The one after that? etc.) 



  

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.
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