

Week 7 Tutorial
Regular Languages

Download the starter files for
Problem Set Six, extract them

somewhere convenient, and run the
provided program. You will need the

Automaton Editor to complete
today’s tutorial exercises.

Download the starter files for
Problem Set Six, extract them

somewhere convenient, and run the
provided program. You will need the

Automaton Editor to complete
today’s tutorial exercises.

Part 1: Designing DFAs

Designing DFAs

● States – pieces of information
● What do I have to keep track of in the

course of figuring out whether a string is in
this language?

Designing DFAs

● States – pieces of information
● What do I have to keep track of in the

course of figuring out whether a string is in
this language?

● Transitions – updating state
● From the state I’m currently in, what do I

know about my string? How would reading
this character change what I know?

An Analogy

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

An Analogy

Alice

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

An Analogy

BobAlice

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

An Analogy

BobAlice

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input.

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input.

9

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

What does Alice need to remember
about the characters she’s receiving
from Bob?

9

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob.

L = { w | w is a natural
number divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob.

9

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob.

6

9

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob.

6

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob.

. . .

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his
string and sends Alice a signal that
he’s done sending input.

0

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his
string and sends Alice a signal that
he’s done sending input.

0

<end>

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

At this point, Alice just has to look at the
last digit she wrote down and if it’s a 5 or
0, Bob’s string belongs in the language.

0

<end>

L = { w | w is a natural
number divisible by 5 }

DFA Design Strategy

● Identify Core Information
● Answer the question “What do I have to keep track of

in the course of figuring out whether a string is in this
language?”

● Create Your States
● Create a state that represents each possible answer to

that question.
● Add Transitions

● From each state, go through all of the characters and
answer the question “How would reading this
character change what I know about my string?” and
draw transitions to the appropriate states.

Oreo Sandwiches

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

Let Σ = { O, R }

Oreo Sandwiches

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

Oreo Sandwiches

ORO ∈ L
●

 ROOOR ∈ L
OROORORRO ∈ L

OR ∉ L
●

 OOOOOR ∉ L
RORORORO ∉ L

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

Oreo Sandwiches

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

Oreo Sandwiches

What do I have to keep track of in the
course of figuring out whether a string is

in this language?

What do I have to keep track of in the
course of figuring out whether a string is

in this language?

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

Oreo Sandwiches

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

● We need to keep track of the very first character.
● And we need to keep track of the last character

we’ve read so that when we reach the end, we
can check whether the first and last characters
were the same.

Oreo Sandwiches

Let Σ = { O, R }. Design a DFA for the
language

L = { w ∈ Σ* | w ≠ ε and the first and last
character of w are the same }.

 1) Draw a DFA for L using the Automaton
Editor and save it as
res/TutorialWeek7.Q1.automaton

Then, submit that file to Gradescope.

 1) Draw a DFA for L using the Automaton
Editor and save it as
res/TutorialWeek7.Q1.automaton

Then, submit that file to Gradescope.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

no first
character

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

no first
character

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start We need to keep track of the
very first character, which

could either be an O or an R.
no first
character

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start We need to keep track of the
very first character, which

could either be an O or an R.

first
character is

O

first
character is

R

no first
character

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

If I’m in the start state and
I read an O, I should
transition to this state

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

Likewise if I’m in the start
state and I read an R, I
should transition to this state

R
no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

We also need to keep track of
the last character we’ve read

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

In either case, the last character
could either be an O or an R

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the first

character is an O and the last character is an O

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the first

character is an O and the last character is an O

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

Where should the transitions go?

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

As long as I’m still reading Os here,
I should stay in this state because
the last character read was an O

O last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

If I read an R, then I should
transition over here

O

R

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Which of these states should
be accepting states?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

If we end up in this state, that means both
the first and last character were Os, so we
should accept.

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

If we end up in this state, that means both
the first and last character were Os, so we
should accept.

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Similarly, this state should also be
accepting because it means the first and
last character were Rs

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Similarly, this state should also be
accepting because it means the first and
last character were Rs

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

If we end up in this state, that means the
first character was an O but the last
character was an R, so we should reject.

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

This is also a rejecting state. It represents
strings where the first character was an R
but the last character was an O.

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Lastly, the start state is also a rejecting
state because we specified that ε ∉ L

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Great question: why do we need these two states?Great question: why do we need these two states?

last
character

is R

last
character

is O

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

start

O

R

O

O

R

R
Why can’t we have a DFA

that looks like this for this
language?

Why can’t we have a DFA
that looks like this for this

language?

last
character

is O

last
character

is R

no first
character

first
character is

O

first
character is

R

Part 2: Designing NFAs

Designing NFAs

● Is there some information that you'd
really like to have?
● Have the machine nondeterministically

guess that information.
● Then, have the machine deterministically

check that the choice was correct.

More Oreo Sandwiches

Let Σ = { O, R }. Design an NFA for the
language

L = { w ∈ Σ* | Some character of Σ appears at
 most twice in w }

More Oreo Sandwiches

Let Σ = { O, R }. Design an NFA for the
language

L = { w ∈ Σ* | Some character of Σ appears at
 most twice in w }

ε ∈ L

ORO ∈ L
RRORR ∈ L

RRROOO ∉ L

ROROROOO ∉ L
OROORRO ∉ LR ∈ L

More Oreo Sandwiches

Let Σ = { O, R }. Design an NFA for the
language

L = { w ∈ Σ* | Some character of Σ appears at
 most twice in w }

 1) Draw a NFA for L using the Automaton Editor and
save it as res/TutorialWeek7.Q2.automaton

(Hint: What would you do if you knew which
character was going to appear at most twice?)

Then, submit
res/TutorialWeek7.Q1.automaton and
res/TutorialWeek7.Q2.automaton
to Gradescope.

 1) Draw a NFA for L using the Automaton Editor and
save it as res/TutorialWeek7.Q2.automaton

(Hint: What would you do if you knew which
character was going to appear at most twice?)

Then, submit
res/TutorialWeek7.Q1.automaton and
res/TutorialWeek7.Q2.automaton
to Gradescope.

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

O appears at most twiceO appears at most twice

R appears at most twice

ε

ε

Have the machine
nondeterministically
guess which character
appears at most twice

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

O appears at
most twice

R appears at most twice

ε

ε

Now, have the machine
deterministically check whether
or not O actually does appear at
most twice.

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

ε

ε

Zero “o”s

O

One “o”

O

Two “o”s

If O appears at most twice, there
could either be zero Os, one O, or
two Os

R appears at most twice

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

ε

ε

Zero “o”s

O

One “o”

O

Two “o”s

R R R

Reading an O takes us one step
forward, reading R doesn’t change
the number of Os we’ve seen

R appears at most twice

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

ε

ε

Zero “o”s

O

One “o”

O

Two “o”s

All of these are accepting
states, and if we happen to read
any more than two Os, we reject.

R appears at most twice

R R R

More Oreo Sandwiches

L = { w ∈ Σ* | Some character of Σ appears
at most twice in w }

start

ε

ε

O O

R R

O O O

R R R

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

