

Week 8 Tutorial
Regular Expressions,

Nonregular Languages

Part 1: Designing Regular Expressions

Designing Regexes

Write out some sample strings in the language and
look for patterns:

● Can I separate out the strings into two (or more)
categories?
– Union – find the pattern for each category, then union together

● Can I break this problem down into solving some smaller

subproblems?
– Concatenation - find the pattern for each piece/subproblem,

then concatenate together

● Is there some sort of repeating structure?
– Kleene star – find smallest repeating unit, then star that pattern

Banana Languages

Let Σ = { A, N } .

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

Banana Languages

Let Σ = { A, N }.

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

N ∈ L
ANANA ∈ L
NANANANAN ∈ L

AAN ∉ L
 NNNNN ∉ L
 ANAANA ∉ L

Banana Languages

Let Σ = { A, N }.

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

 1) Create a regex for the language above.

Submit on Gradescope!

 1) Create a regex for the language above.

Submit on Gradescope!

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

N

AN

NA

ANA

NAN

ANAN

NANA

ANANA

NANAN

...

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

N

AN

NA

ANA

NAN

ANAN

NANA

ANANA

NANAN

...

Can I separate out the
strings into two (or more)
categories?

● Union – find the
pattern for each
category, then union
together

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Can I separate out the
strings into two (or more)
categories?

● Union – find the
pattern for each
category, then union
together

N

NA

NAN

NANA

NANAN

...

Starts with A Starts with N

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

Can I break this problem
down into solving some
smaller subproblems?

● Concatenation - find
the pattern for each
piece/subproblem, then
concatenate together

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

Can I break this problem
down into solving some
smaller subproblems?

● Concatenation - find
the pattern for each
piece/subproblem, then
concatenate together

A(sequence of NAs)(possibly another N)

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

A(sequence of NAs)(possibly another N)

Banana Languages

Is there some sort of
repeating structure?

● Kleene star – find
smallest repeating unit,
then star that pattern

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

A(NA)*N?

Is there some sort of
repeating structure?

● Kleene star – find
smallest repeating unit,
then star that pattern

Banana Languages

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between A and N }

A

AN

ANA

ANAN

ANANA

...

Starts with A

N

NA

NAN

NANA

NANAN

...

Starts with N

A(NA)*N? ∪ N(AN)*A?

Banana Languages

Part 2: Myhill Nerode

Approaching Myhill-Nerode

In lecture we saw how to prove a
language L is non-regular using the
Myhill-Nerode theorem. To so do, we:

1) Find an infinite, distinguishing set S.

2) Prove that S is an infinite set.

3) Prove that S is a distinguishing set by
picking two arbitrary strings from S and
showing that they’re distinguishable relative
to L.

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

● General intuition:
● Start by thinking about what information a

computer “must” remember in order to
answer correctly.

● Choose a group of strings that all require
different information.

● Prove that those strings are distinguishable
relative to the language in question.

An Analogy

BobAlice

string w

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language.

language L

An Analogy

BobAlice

string w

language L

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input.

An Analogy

BobAlice

string w

language L

What does Alice need to remember
about the characters she’s receiving
from Bob?

An Analogy

BobAlice

961820

L = { w | w is a natural
number divisible by 5 }

What does Alice need to remember
about the characters she’s receiving
from Bob?

An Analogy

BobAlice

961820

Initially, it seems like Alice has to remember the whole number that
Bob is sending to her. But we only care about divisibility by 5 here,

so we can get away with remembering a lot less!

Initially, it seems like Alice has to remember the whole number that
Bob is sending to her. But we only care about divisibility by 5 here,

so we can get away with remembering a lot less!

L = { w | w is a natural
number divisible by 5 }

What does Alice need to remember
about the characters she’s receiving
from Bob?

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

0

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

9The number that Bob is thinking of could get unboundedly large,
but the size of what Alice needs to remember remains constant

(finite).

The number that Bob is thinking of could get unboundedly large,
but the size of what Alice needs to remember remains constant

(finite).

L = { w | w is a natural
number divisible by 5 }

An Analogy

BobAlice

aaabbb

Let’s contrast this with one of the non-
regular languages we saw in class:

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches.

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches.

L = { anbn | n ∈ ℕ }

As the size of Bob’s string gets larger, the amount of memory
Alice needs also increases. Since Bob’s string could get unboundedly

large, we need infinite memory.

As the size of Bob’s string gets larger, the amount of memory
Alice needs also increases. Since Bob’s string could get unboundedly

large, we need infinite memory.

An Analogy

BobAlice

string w

language L

Key insight: if Alice has to remember
infinitely many things, or one of infinitely
many possibilities, the language is
probably not regular.

More Banana Languages
Let Σ = { A, N }.

Consider the language

L = { w ∈ Σ* | w is a palindrome }

More Banana Languages

N ∈ L
ANANA ∈ L
AAAA ∈ L

AN ∉ L
 NNNNAN ∉ L
 NAAA ∉ L

Let Σ = { A, N }.

Consider the language

L = { w ∈ Σ* | w is a palindrome }

More Banana Languages
Let Σ = { A, N }.

Consider the language

L = { w ∈ Σ* | w is a palindrome }

 2a) Which of the following sets would be a suitable choice to show
 that L is non-regular? For choices that don’t work, explain why not.

i. { A, AA, AAA, AAAA, AAAAA }
ii. { An | n ∈ ℕ }
iii. { AnN | n ∈ ℕ }
iv. { AnNn | n ∈ ℕ }

 As a reminder, a distinguishing set S ⊆ Σ* is a set such that:

∀x ∈ S. ∀y ∈ S. (x ≠ y → ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L))

Submit on Gradescope!

 2a) Which of the following sets would be a suitable choice to show
 that L is non-regular? For choices that don’t work, explain why not.

i. { A, AA, AAA, AAAA, AAAAA }
ii. { An | n ∈ ℕ }
iii. { AnN | n ∈ ℕ }
iv. { AnNn | n ∈ ℕ }

 As a reminder, a distinguishing set S ⊆ Σ* is a set such that:

∀x ∈ S. ∀y ∈ S. (x ≠ y → ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L))

Submit on Gradescope!

L = { w ∈ Σ* | w is a palindrome }

S = { A, AA, AAA, AAAA, AAAAA }

L = { w ∈ Σ* | w is a palindrome }

S = { An | n ∈ ℕ }

L = { w ∈ Σ* | w is a palindrome }

S = { AnN | n ∈ ℕ }

L = { w ∈ Σ* | w is a palindrome }

S = { AnNn | n ∈ ℕ }

More Banana Languages
Let Σ = { A, N }.

Consider the language

L = { w ∈ Σ* | w is a palindrome }

 2b) Let’s say we choose S to be { An | n ∈ ℕ }. Identify the error in
 each of the following incorrect ways of proving that S is a
 distinguishing set.

i. Consider any two strings An, Am ∈ S where m ≠ n. Then AnAn ∈ L but
An+1An ∉ L.

ii. Consider any two strings An, An+1 ∈ S. Then AnNAn ∈ L but An+1NAn ∉ L.
iii. Consider any two strings An, Am ∈ S where m ≠ n. Then AnNAn ∈ L

but AnNAm ∉ L.

Submit on Gradescope!

 2b) Let’s say we choose S to be { An | n ∈ ℕ }. Identify the error in
 each of the following incorrect ways of proving that S is a
 distinguishing set.

i. Consider any two strings An, Am ∈ S where m ≠ n. Then AnAn ∈ L but
An+1An ∉ L.

ii. Consider any two strings An, An+1 ∈ S. Then AnNAn ∈ L but An+1NAn ∉ L.
iii. Consider any two strings An, Am ∈ S where m ≠ n. Then AnNAn ∈ L

but AnNAm ∉ L.

Submit on Gradescope!

L = { w ∈ Σ* | w is a palindrome }

S = { An | n ∈ ℕ }

Consider any two strings An, Am ∈ S where m ≠ n.
Then AnAn ∈ L but An+1An ∉ L.

Consider any two strings An, Am ∈ S where m ≠ n.
Then AnAn ∈ L but An+1An ∉ L.

L = { w ∈ Σ* | w is a palindrome }

S = { An | n ∈ ℕ }

Consider any two strings An, An+1 ∈ S.
Then AnNAn ∈ L but An+1NAn ∉ L.

Consider any two strings An, An+1 ∈ S.
Then AnNAn ∈ L but An+1NAn ∉ L.

L = { w ∈ Σ* | w is a palindrome }

S = { An | n ∈ ℕ }

Consider any two strings An, Am ∈ S where m ≠ n.
Then AnNAn ∈ L but AnNAm ∉ L.

Consider any two strings An, Am ∈ S where m ≠ n.
Then AnNAn ∈ L but AnNAm ∉ L.

More Banana Languages
Let Σ = { A, N }.

Consider the language

L = { w ∈ Σ* | w is a palindrome }

 2c) Write up a proof that this language is non-regular. You may use
 any distinguishing set you’d like, just make sure you haven’t fallen
 into any of the common errors we saw in parts a) and b).

Submit on Gradescope!

 2c) Write up a proof that this language is non-regular. You may use
 any distinguishing set you’d like, just make sure you haven’t fallen
 into any of the common errors we saw in parts a) and b).

Submit on Gradescope!

Proof: Let S = { An | n ∈ ℕ }. We will prove that S is infinite
and that S is a distinguishing set for L.

To see that S is infinite, note that S contains one string
for each natural number.

To see that S is a distinguishing set for L, consider any
strings Am, An ∈ S where m ≠ n. Note that AmNAm ∈ L but
AnNAm ∉ L. Therefore, we see that Am ≢L A

n, as required.

Since S is infinite and is a distinguishing set for L, by the
Myhill-Nerode theorem we see that L is not regular. ■

Theorem: The language L = { w ∈ Σ* | w is a palindrome }
is non-regular.

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

