
  

Week 9 Tutorial
Context-Free Grammars, TMs



  

Part 1: CFGs Warmup



  

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

   S → YSD | DSY | ε
   Y → yY | ε
   D → dD | ε
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Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w 
describes a series of steps where you and your dog 
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:
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  1) Explain why none of these  
  grammars are correct by                
  identifying an example string in     
  the language of the grammar but   
  not in DOGWALK or a string          
  that’s in DOGWALK that’s not in    
  the language of the grammar.

 
Fill in answer on 

Gradescope!
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This grammar generates the string 
dd, which is not in DOGWALK. 

Takeaway: related quantities can’t 
be built independently. If two 
parts of your string have to match 
up, they need to be built together.
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Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w 
describes a series of steps where you and your dog 
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

   S → YSD | DSY | ε
   Y → yY | ε
   D → dD | ε
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This grammar can’t generate the 
string yddy, which is in DOGWALK. 

Takeaway: make sure you don’t 
unintentionally impose additional 
restrictions. While we need the 
number of ys and ds to be the 
same, it doesn’t matter what order 
they come in.
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S → ySd | dSy | ε
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   S → YSD | DSY | ε
   Y → yY | ε
   D → dD | ε

1

2

3

4

This grammar can’t generate 
the string yydd, which is in 
DOGWALK. 

Takeaway: similar to the 
previous option, this grammar 
restricts the ordering of ys 
and ds.
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Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w 
describes a series of steps where you and your dog 
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

   S → YSD | DSY | ε
   Y → yY | ε
   D → dD | ε
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This grammar can’t generate the string 
yyddddyy, which is in DOGWALK. 

Takeaway: don’t try to patch up a CFG 
by adding in more productions. In CFG 
design, you’re looking for a general 
rule that captures the language. 

For this particular example, simply 
listing off all permutations of y, d, 
and S isn’t a great approach because 
you can’t be sure that you’ve covered 
everything.    



  

Part 2: Designing CFGs



  

Storing Information in Nonterminals

● Key idea: Different non-terminals should 
represent different states or different types of 
strings.
● For example, different phases of the build, or 

different possible structures for the string.
● Think like the same ideas from DFA/NFA 

design where states in your automata 
represent pieces of information.



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Examples:

ε ∈ L       a ∉ L

abb ∈ L   b ∉ L

bab ∈ L  ababab ∉ L

aababa ∈ L  aabaaaaaa ∉ L 

bbbbbb ∈ L  bbbb ∉ L
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Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Examples:

ε ∈ L  a ∉ L

a bb ∈ L  b ∉ L

b ab ∈ L  ab abab ∉ L

aa baba ∈ L  aab aaaaaa ∉ L 

bb bbbb ∈ L  bbbb ∉ L



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

   2) Create a CFG for the language above.

Fill in answer on Gradescope!

   2) Create a CFG for the language above.

Fill in answer on Gradescope!



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 1:

Strings in this 
language are either: 
the first third is as or 
the first third is bs. 
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● One approach: 
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for every a I have in 
the first third, I need 
two other characters 
in the last two-thirds. 
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aaaaaaaaa bbbbbabaa
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Among these strings, 
for every a I have in 
the first third, I need 
two other characters 
in the last two-thirds. This pattern of “for every x I 

see here, I need a y somewhere 
else in the string” is very 

common in CFGs!

This pattern of “for every x I 
see here, I need a y somewhere 

else in the string” is very 
common in CFGs!



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:
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Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

aaa abaa bbabbb



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

aaa abaa bbabbb



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa abaa bbab



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa abaa bbab



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa ababaa bb



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa ababaa bb



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

a bbaa aba bbaba

Observation 3:

Crossing off the first 
character and last two 
characters leaves a 
string in L.

Base case: ε ∈ L.



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

A → aA_ _ | ε X → a | b

a bbaa aba bbaba

Observation 3:

Crossing off the first 
character and last two 
characters leaves a 
string in L.

Base case: ε ∈ L.



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

a bbaa aba bbaba

Observation 3:

Crossing off the first 
character and last two 
characters leaves a 
string in L.

Base case: ε ∈ L.



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● One approach: 

aaa bab

abb bbb 

aaabab bbabbb

aababa bbbaaaaaa 

aaaaaaaaa bbbbbabaa

B → bBXX | ε X → a | b



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Tying everything together: 

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Tying everything together: 

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Overall strings in this language either 
follow the pattern of A or B.

Overall strings in this language either 
follow the pattern of A or B.



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Tying everything together: 

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

A represents “strings where the first 
third is a’s”

A represents “strings where the first 
third is a’s”



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Tying everything together: 

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

B represents “strings where the first 
third is b’s”

B represents “strings where the first 
third is b’s”



  

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
                   first third of w are the same }.

● Tying everything together: 

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b X represents “either an a or a b”X represents “either an a or a b”



  

Part 3: Turing Machines



  

TMs and Programs

● Though TMs are formally defined using 
states, transitions, and a tape, we can 
describe the behavior of what TMs can do 
by writing pseudocode and abstract away 
the details of how exactly it’s operating.

● Throughout the rest of the course, we’ll 
switch back and forth between these two 
different models of TM behavior.



  

  3. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

  3. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

/* Program One */
int main() {
  string input = getInput();
  for (char ch: input) {
    if (ch != 'a') reject();
  }
  accept();
}

/* Program Three */
int main() {
  string input = getInput();
  if (input == "") accept();
  

  int left = 0;
  int right = input.size() - 1;
  

  while (left < right) {
    if (input[left] != input[right]) {
      reject();
    }
    left++; right--;
  }
  accept();
}

/* Program Two */
int main() {
  string input = getInput();
  int n = input.size();
  if (n == 0) reject();

  while (n != 1) {
    if (n % 2 != 0) {
      reject();
    }
    n /= 2;
  }
  accept();
}



  

/* Program One */
int main() {
  string input = getInput();
  for (char ch: input) {
    if (ch != 'a') reject();
  }
  accept();
}



  

/* Program Two */
int main() {
  string input = getInput();
  int n = input.size();
  if (n == 0) reject();

  while (n != 1) {
    if (n % 2 != 0) {
      reject();
    }
    n /= 2;
  }
  accept();
}



  

/* Program Three */
int main() {
  string input = getInput();
  if (input == "") accept();
  

  int left = 0;
  int right = input.size() - 1;
  

  while (left < right) {
    if (input[left] != input[right]) {
      reject();
    }
    left++; right--;
  }
  accept();
}



  

  4. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

  4. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

/* Program Two */
int main() {
  string input = getInput();
  string me = mySource();

  if (me == me + input) {
    accept();
  } else {
    reject();
  }
}

/* Program Three */
int main() {
  string input = getInput();
  string me = mySource();

  if (me == "quokka") {
    reject();
  } else {
    accept();
  }
}

/* Program One */
int main() {
  string input = getInput();
  string me = mySource();

  if (input != "" && input[0] == me[0]) {
    accept();
  } else {
    reject();
  }
}



  

/* Program One */
int main() {
  string input = getInput();
  string me = mySource();

  if (input != "" && input[0] == me[0]) {
    accept();
  } else {
    reject();
  }
}



  

/* Program Two */
int main() {
  string input = getInput();
  string me = mySource();

  if (me == me + input) {
    accept();
  } else {
    reject();
  }
}



  

/* Program Three */
int main() {
  string input = getInput();
  string me = mySource();

  if (me == "quokka") {
    reject();
  } else {
    accept();
  }
}



  

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.
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