Week 9 Tutorial
 Context-Free Grammars, TMs

Part 1: CFGs Warmup

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY | }
Y }->\textrm{yY}|
D }->\textrm{dD}|
```

$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$

```
S }->\mathrm{ ydS | dyS | ع
```

S \rightarrow ySd | dSy | ydS | dyS | ε

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}

Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY | }
Y }->\textrm{yY}|
D }->\textrm{dD}|
```


$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
    S }->\mathrm{ YSD | DSY | }
    Y }->\textrm{yY}|
    D }->\textrm{dD}|
```

 \(\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon\)
 \(\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon\)
 \(\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \mathrm{ydS}|\mathrm{dyS}| \varepsilon\)

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}

Here are some incorrect CFGs for DOGWALK:

```
\(\mathrm{S} \rightarrow \mathrm{YSD}|\mathrm{DSY}| \varepsilon\)
\(\mathbf{Y} \rightarrow \mathbf{y} \mid \varepsilon\)
\(D \rightarrow d \mathrm{D} \mid \varepsilon\)
```

$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$
$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$
This grammar generates the string dd, which is not in DOGWALK.

Takeaway: related quantities can't be built independently. If two parts of your string have to match up, they need to be built together.

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY | &
Y }->\textrm{yY}|
D }->\textrm{dD}|
```


$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

S \rightarrow ySd | dSy | ydS | dyS | ε

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}

Here are some incorrect CFGs for DOGWALK:

```
S \(\rightarrow\) YSD | DSY | \(\mathbf{Y} \rightarrow \mathbf{y Y} \mid \varepsilon\)
\[
\mathrm{D} \rightarrow \mathrm{dD} \mid \varepsilon
\]
```


$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

This grammar can't generate the string yddy, which is in DOGWALK.

Takeaway: make sure you don't unintentionally impose additional restrictions. While we need the number of \mathbf{y}_{s} and $\mathbf{d s}$ to be the same, it doesn't matter what order they come in.

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY | &
Y }->\mathbf{yY|\varepsilon
D }->\textrm{dD}|
```

$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

S \rightarrow ySd \| dSy | ydS | dyS \| ε

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY | &
Y }->\textrm{yY}|
D }->\textrm{dD}|
```

$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$
$\mathrm{S} \rightarrow \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

This grammar can't generate the string yydd, which is in DOGWALK.

Takeaway: similar to the previous option, this grammar restricts the ordering of $\mathbf{y s}$ and $\mathbf{d s}$.

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}
Here are some incorrect CFGs for DOGWALK:

```
S }->\mathrm{ YSD | DSY| &
Y }->\mathbf{yY|\varepsilon
D }->\textrm{dD}|
```

$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \varepsilon$
$S \rightarrow \operatorname{ydS}|\operatorname{dyS}| \varepsilon$
$\mathrm{S} \rightarrow \mathrm{ySd}|\mathrm{dSy}| \mathrm{ydS}|\mathrm{dyS}| \varepsilon$

Let $\Sigma=\{\mathbf{y}, \mathrm{d}\}$ and let DOGWALK $=\left\{w \in \Sigma^{*} \mid w\right.$ describes a series of steps where you and your dog arrive at the same point \}

Here are some incorrect CFGs for DOGWALK:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{Y S D}|\mathrm{DSY}| \varepsilon \\
& \mathbf{Y} \rightarrow \mathbf{y Y} \mid \varepsilon \\
& \mathbf{D} \rightarrow \mathbf{d} \mid \varepsilon
\end{aligned}
$$

$S \rightarrow$ ySd | dSy | ε

This grammar can't generate the string yyddddyy, which is in DOGWALK.

Takeaway: don't try to patch up a CFG by adding in more productions. In CFG design, you're looking for a general rule that captures the language.

For this particular example, simply listing off all permutations of \mathbf{y}, \mathbf{d}, and \mathbf{S} isn't a great approach because you can't be sure that you've covered everything.

Part 2: Designing CFGs

Storing Information in Nonterminals

- Key idea: Different non-terminals should represent different states or different types of strings.
- For example, different phases of the build, or different possible structures for the string.
- Think like the same ideas from DFA/NFA design where states in your automata represent pieces of information.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:

$$
\begin{array}{r}
L=\left\{w \in \Sigma^{*} \mid\right. \\
\text { first third of } w \text { are the same }\} .
\end{array}
$$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Examples:
$\varepsilon \in L$
a $\notin L$
$\mathbf{a b b} \in L$
bab $\in L$
aababa $\in L$
bbbbbb $\in L$
b $\notin L$
ababab $\notin L$
aabaaaaaa $\notin L$ bbbb $\notin L$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Examples:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.

2) Create a CFG for the language above.

Fill in answer on Gradescope!

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
bab
bbb
bbabbb
bbbaaaaaa
bbbbbabaa

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:

aaa	bab	Observation 1:
abb	bbb	Strings in this
aaabab	bbabbb	language are either: the first thirr is as or
aababa	bbbaaaaaa	the first third is bs.
aaaaaaaaa	bbbbbabaa	

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:

aaa

abb
aaabab
aababa
aaaaaaaaa

Observation 2:

Among these strings, for every a I have in the first third, I need two other characters in the last two-thirds.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
This pattern of "for every x I
see here, I need a y somewhere else in the string" is very common in CFGs:

Observation 2:

Among these strings, for every a I have in the first third, I need two other characters in the last two-thirds.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
aaaa|babbabbb

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
aaababbab
Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
aaaa|babbabbb
Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
aaaa|babbabbb
Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa abb
aaabab
aababa
aaaaaaaaa
aaababbabbb
Observation 3:

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa abb
aaabab
aababa
aaaaaaaaa

aaababbabbb

Observation 3:

Crossing off the first character and last two characters leaves a string in L.
Base case: $\varepsilon \in L$.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
$\mathbf{A} \rightarrow \mathbf{a} \mathbf{A}_{-}$|
bab

a a a ababbabbb

Observation 3:

Crossing off the first character and last two characters leaves a string in L.
Base case: $\varepsilon \in L$.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
$\mathbf{A} \rightarrow \operatorname{aAXX} \mid \varepsilon$

aaababbabbb

Observation 3:

Crossing off the first character and last two characters leaves a string in L.
Base case: $\varepsilon \in L$.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- One approach:

abb
$B \rightarrow b B X X \mid \varepsilon$
bab
bbb
bbabbb
bbbaaaaaa
bbbbbabaa
$X \rightarrow a \mid b$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Tying everything together:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A} \mid \mathbf{B} \\
& \mathbf{A} \rightarrow \mathbf{a A X X} \mid \varepsilon \\
& \mathbf{B} \rightarrow \mathbf{b B X X} \mid \varepsilon \\
& \mathbf{X} \rightarrow \mathbf{a} \mid \boldsymbol{b}
\end{aligned}
$$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Tying everything together:

$$
\mathbf{S} \rightarrow \mathbf{A} \mid \mathbf{B}
$$

Overall strings in this language either follow the pattern of \mathbf{A} or \mathbf{B}.

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Tying everything together:

A \rightarrow TAX $\mid \boldsymbol{\varepsilon}$
A represents "strings where the first third is $\mathbf{a}^{\prime} \mathrm{s}^{\prime}$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Tying everything together:

B $\rightarrow \mathbf{b B X X} \mid \boldsymbol{\varepsilon}$
B represents "strings where the first third is $\mathbf{b}^{\prime} \mathrm{s}^{\prime \prime}$

Storing Information in Nonterminals

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and consider this language:
$L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all characters in the first third of w are the same \}.
- Tying everything together:

$$
X \rightarrow a \mid b
$$

Part 3: Turing Machines

TMs and Programs

- Though TMs are formally defined using states, transitions, and a tape, we can describe the behavior of what TMs can do by writing pseudocode and abstract away the details of how exactly it's operating.
- Throughout the rest of the course, we'll switch back and forth between these two different models of TM behavior.

3. Each of the following programs is a decider for some language. Tell us what each of those languages is.
```
/* Program One */
int main() {
    string input = getInput();
    for (char ch: input) {
            if (ch != 'a') reject();
        }
        accept();
}
```

```
/* Program Two */
int main() {
    string input = getInput();
    int n = input.size();
    if (n == 0) reject();
    while (n != 1) {
        if (n % 2 != 0) {
            reject();
        }
        n /= 2;
    }
    accept();
}
```

```
/* Program Three */
int main() {
    string input = getInput();
    if (input == "") accept();
    int left = 0;
    int right = input.size() - 1;
    while (left < right) {
        if (input[left] != input[right]) {
        reject();
        }
        left++; right--;
    }
    accept();
}
```

```
/* Program One */
int main() {
    string input = getInput();
    for (char ch: input) {
        if (ch != 'a') reject();
    }
    accept();
}
```

```
/* Program Two */
int main() {
    string input = getInput();
    int n = input.size();
    if (n == 0) reject();
    while (n != 1) {
        if (n % 2 != 0) {
        reject();
        }
        n /= 2;
    }
    accept();
}
```

```
/* Program Three */
int main() {
    string input = getInput();
    if (input == "") accept();
    int left = 0;
    int right = input.size() - 1;
    while (left < right) {
        if (input[left] != input[right]) {
            reject();
        }
        left++; right--;
    }
    accept();
}
```

4. Each of the following programs is a decider for some language. Tell us what each of those languages is.
```
/* Program One */
int main() {
    string input = getInput();
    string me = mySource();
    if (input != "" && input[0] == me[0]) {
        accept();
    } else {
        reject();
    }
}
```

```
/* Program Two */
int main() {
    string input = getInput();
    string me = mySource();
    if (me == me + input) {
        accept();
    } else {
        reject();
    }
}
```

```
/* Program Three */
int main() {
    string input = getInput();
    string me = mySource();
    if (me == "quokka") {
        reject();
    } else {
        accept();
    }
}
```

```
/* Program One */
int main() {
    string input = getInput();
    string me = mySource();
    if (input != "" && input[0] == me[0]) {
        accept();
    } else {
        reject();
    }
}
```

```
/* Program Two */
int main() {
    string input = getInput();
    string me = mySource();
    if (me == me + input) {
        accept();
    } else {
        reject();
    }
}
```

```
/* Program Three */
int main() {
    string input = getInput();
    string me = mySource();
    if (me == "quokka") {
        reject();
    } else {
        accept();
    }
}
```


Thanks for Calling In!

Stay safe, stay healthy, and have a good week!

See you next time.

