

Week 9 Tutorial
Context-Free Grammars, TMs

Part 1: CFGs Warmup

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

 1) Explain why none of these
 grammars are correct by
 identifying an example string in
 the language of the grammar but
 not in DOGWALK or a string
 that’s in DOGWALK that’s not in
 the language of the grammar.

Fill in answer on

Gradescope!

 1) Explain why none of these
 grammars are correct by
 identifying an example string in
 the language of the grammar but
 not in DOGWALK or a string
 that’s in DOGWALK that’s not in
 the language of the grammar.

Fill in answer on

Gradescope!

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

This grammar generates the string
dd, which is not in DOGWALK.

Takeaway: related quantities can’t
be built independently. If two
parts of your string have to match
up, they need to be built together.

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

This grammar can’t generate the
string yddy, which is in DOGWALK.

Takeaway: make sure you don’t
unintentionally impose additional
restrictions. While we need the
number of ys and ds to be the
same, it doesn’t matter what order
they come in.

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

This grammar can’t generate
the string yydd, which is in
DOGWALK.

Takeaway: similar to the
previous option, this grammar
restricts the ordering of ys
and ds.

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

Let Σ = {y, d} and let DOGWALK = {w ∈ Σ* | w
describes a series of steps where you and your dog
arrive at the same point }

Here are some incorrect CFGs for DOGWALK:

S → ySd | dSy | ε

S → ydS | dyS | ε

S → ySd | dSy | ydS | dyS | ε

 S → YSD | DSY | ε
 Y → yY | ε
 D → dD | ε

1

2

3

4

This grammar can’t generate the string
yyddddyy, which is in DOGWALK.

Takeaway: don’t try to patch up a CFG
by adding in more productions. In CFG
design, you’re looking for a general
rule that captures the language.

For this particular example, simply
listing off all permutations of y, d,
and S isn’t a great approach because
you can’t be sure that you’ve covered
everything.

Part 2: Designing CFGs

Storing Information in Nonterminals

● Key idea: Different non-terminals should
represent different states or different types of
strings.
● For example, different phases of the build, or

different possible structures for the string.
● Think like the same ideas from DFA/NFA

design where states in your automata
represent pieces of information.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Examples:

ε ∈ L a ∉ L

abb ∈ L b ∉ L

bab ∈ L ababab ∉ L

aababa ∈ L aabaaaaaa ∉ L

bbbbbb ∈ L bbbb ∉ L

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Examples:

ε ∈ L a ∉ L

abb ∈ L b ∉ L

bab ∈ L ababab ∉ L

aababa ∈ L aabaaaaaa ∉ L

bbbbbb ∈ L bbbb ∉ L

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Examples:

ε ∈ L a ∉ L

a bb ∈ L b ∉ L

b ab ∈ L ab abab ∉ L

aa baba ∈ L aab aaaaaa ∉ L

bb bbbb ∈ L bbbb ∉ L

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

 2) Create a CFG for the language above.

Fill in answer on Gradescope!

 2) Create a CFG for the language above.

Fill in answer on Gradescope!

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 1:

Strings in this
language are either:
the first third is as or
the first third is bs.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Among these strings,
for every a I have in
the first third, I need
two other characters
in the last two-thirds.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Among these strings,
for every a I have in
the first third, I need
two other characters
in the last two-thirds. This pattern of “for every x I

see here, I need a y somewhere
else in the string” is very

common in CFGs!

This pattern of “for every x I
see here, I need a y somewhere

else in the string” is very
common in CFGs!

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

aaa abaa bbabbb

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

aaa abaa bbabbb

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa abaa bbab

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa abaa bbab

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa ababaa bb

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa ababaa bb

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 3:

a bbaa aba bbaba

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

a bbaa aba bbaba

Observation 3:

Crossing off the first
character and last two
characters leaves a
string in L.

Base case: ε ∈ L.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aA_ _ | ε X → a | b

a bbaa aba bbaba

Observation 3:

Crossing off the first
character and last two
characters leaves a
string in L.

Base case: ε ∈ L.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

a bbaa aba bbaba

Observation 3:

Crossing off the first
character and last two
characters leaves a
string in L.

Base case: ε ∈ L.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

B → bBXX | ε X → a | b

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Overall strings in this language either
follow the pattern of A or B.

Overall strings in this language either
follow the pattern of A or B.

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

A represents “strings where the first
third is a’s”

A represents “strings where the first
third is a’s”

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

B represents “strings where the first
third is b’s”

B represents “strings where the first
third is b’s”

Storing Information in Nonterminals

● Let Σ = {a, b} and consider this language:

L = {w ∈ Σ* | |w| ≡3 0 and all characters in the
 first third of w are the same }.

● Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b X represents “either an a or a b”X represents “either an a or a b”

Part 3: Turing Machines

TMs and Programs

● Though TMs are formally defined using
states, transitions, and a tape, we can
describe the behavior of what TMs can do
by writing pseudocode and abstract away
the details of how exactly it’s operating.

● Throughout the rest of the course, we’ll
switch back and forth between these two
different models of TM behavior.

 3. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

 3. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

/* Program One */
int main() {
 string input = getInput();
 for (char ch: input) {
 if (ch != 'a') reject();
 }
 accept();
}

/* Program Three */
int main() {
 string input = getInput();
 if (input == "") accept();

 int left = 0;
 int right = input.size() - 1;

 while (left < right) {
 if (input[left] != input[right]) {
 reject();
 }
 left++; right--;
 }
 accept();
}

/* Program Two */
int main() {
 string input = getInput();
 int n = input.size();
 if (n == 0) reject();

 while (n != 1) {
 if (n % 2 != 0) {
 reject();
 }
 n /= 2;
 }
 accept();
}

/* Program One */
int main() {
 string input = getInput();
 for (char ch: input) {
 if (ch != 'a') reject();
 }
 accept();
}

/* Program Two */
int main() {
 string input = getInput();
 int n = input.size();
 if (n == 0) reject();

 while (n != 1) {
 if (n % 2 != 0) {
 reject();
 }
 n /= 2;
 }
 accept();
}

/* Program Three */
int main() {
 string input = getInput();
 if (input == "") accept();

 int left = 0;
 int right = input.size() - 1;

 while (left < right) {
 if (input[left] != input[right]) {
 reject();
 }
 left++; right--;
 }
 accept();
}

 4. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

 4. Each of the following programs is a decider for some language. Tell
us what each of those languages is.

/* Program Two */
int main() {
 string input = getInput();
 string me = mySource();

 if (me == me + input) {
 accept();
 } else {
 reject();
 }
}

/* Program Three */
int main() {
 string input = getInput();
 string me = mySource();

 if (me == "quokka") {
 reject();
 } else {
 accept();
 }
}

/* Program One */
int main() {
 string input = getInput();
 string me = mySource();

 if (input != "" && input[0] == me[0]) {
 accept();
 } else {
 reject();
 }
}

/* Program One */
int main() {
 string input = getInput();
 string me = mySource();

 if (input != "" && input[0] == me[0]) {
 accept();
 } else {
 reject();
 }
}

/* Program Two */
int main() {
 string input = getInput();
 string me = mySource();

 if (me == me + input) {
 accept();
 } else {
 reject();
 }
}

/* Program Three */
int main() {
 string input = getInput();
 string me = mySource();

 if (me == "quokka") {
 reject();
 } else {
 accept();
 }
}

Thanks for Calling In!

Stay safe, stay healthy,
and have a good week!

See you next time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

