Welcome to CS103!



Are there “laws of physics”
in computer science?



Key Questions in CS103

 What problems can you solve with a
computer?

 Computability Theory

« Why are some problems harder to solve
than others?

« Complexity Theory

 How can we be certain in our answers to
these questions?

 Discrete Mathematics



The Teachmg Team

Keith Schwarz Alejo Navarro Antonio Ferris Drew Kaul Grant McLearn
(Instructor) Goldaraz (TA) (TA) (TA) (TA)

Lucas Sato Meredith Xu Siyan Li Tanish ]ain Zheng Lian
(TA) (TA) (TA) (TA) (TA)

Keith’s Email: hitiek@cs.stanford.edu

Staff Email List: cs103-aut2122-staff@lists.stanford.edu



mailto:htiek@cs.stanford.edu
mailto:cs103-aut2122-staff@lists.stanford.edu

Asking Questions

 We’ve set up an online system you can use to ask us
questions in lecture.

» First, visit our EdStem page. You can use this link:

https://edstem.org/us/join/2qyyuN
 Next, find the pinned thread at the top entitled
Lecture 00: Introduction, Set Theory,.

* Once you've found that thread, giveita  to let us
know you’ve found it.

* Post any questions as a response to this thread. The
TAs will respond to questions as they come in. I'll
periodically take time out of lecture to go over some of
the more popular ones.


https://edstem.org/us/join/2qyyuN

Course Website

https://cs103.stanford.edu

All course confent
will be hosted
here, except tor

lecture videos,



https://cs103.stanford.edu/

Prerequisite / Corequisite

CS106B

Some problem sets will have small There aren'T any math
coding components, We'll also prerequisifes Tor this course
reterence some concepts from — high—school algebra should
CS1068 /%, particularly recursion, be enough:

Throughout the quarter,




Problem Set O

* Your first assignment, Problem Set O,
goes out today. It’s due Friday at 2:30PM
Pacific.

» This assignment requires you to set up
your development environment and to get
set up on GradeScope.

* There’s no coding involved, but it’s good
to start early anyway in case you
encounter any technical issues setting up.



Recommended Reading

MICHAEL SIPSER

DANIEL SOLOW
WILEY




Grading



Grading

B Problem Sets

Ten Problem Sets

Problem sets may be
completed individually or
in pairs.




Grading

B Problem Sets
® Midterms

Two Midterm Exams

48-hour take-home exams.
October 15t — 17th,
November 5th - 7th,




Grading

B Problem Sets
B Midterms

Final Exam

Final Exam

Take-Home Exam.
December 3™ through
December 9th




We've got a big journey ahead of us.

Let's get started!



Introduction to Set Theory



“CS103 students”

“Cool people”
“The chemical elements”

“Cute animals”
“US coins”



A set is an unordered collection of distinct
objects, which may be anything, including
other sets.



A set is an unordered collection of distinct
objects, which may be anything, including other
sets.



Set notafion: Curly braces
with commas separating out
the elements

A set is an unordered collection of distinct
objects, which may be anything, including other
sets.



Two sets are equal when they have the same
contents, ignoring order.



Two sets are equal when they have the same
contents, ignoring order.



Two sets are equal when they have the same
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Two sets are equal when they have the same
contents, ignoring order.



Two sets are equal when they have the same
contents, ignoring order.
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These are Two different
descriptions of exactly the
same sed,

Two sets are equal when they have the same
contents, ignoring order.



Sets cannot contain duplicate elements.
Any repeated elements are ignored.
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Sets cannot contain duplicate elements.
Any repeated elements are ignored.
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These are Two different
descriptions of exactly the
same set.

Sets cannot contain duplicate elements.
Any repeated elements are ignored.



The objects that make up a set are called the
elements of that set.
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The objects that make up a set are called the
elements of that set.



Iy N
Y GOD WE

;; TRUST

N,

This symbol means ‘is

an element ot.,”

The objects that make up a set are called the
elements of that set.



N,

1S

This symbol means
not an element ot.*

The objects that make up a set are called the
elements of that set.



Sets can contain any number of elements.



2,

We denote the
empty set using
this symbol.

The empty set
is the set with
no elements.

Sets can contain any number of elements.
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Question: Are these objects equal?



---------------------------------------------------------------------------------

This is a
v number.

This is a set.
It contains a
number.

--------------------------------------------------------------------------------

Question: Are these objects equal?



---------------------------------------------------------------------------------

This is a
v number.

This is a set.
It contains a
number.

--------------------------------------------------------------------------------

Question: Are these objects equal?
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Question: Are these objects equal?



This is the
empty set.

This is a set
with the empty —
set in it.

--------------------------------------------------------------------------------

Question: Are these objects equal?



This is the
empty set.

This is a set
with the empty —
set in it.

--------------------------------------------------------------------------------

Question: Are these objects equal?



---------------------------------------------------------------------------------

This is x
l itself.
X This is a box
that has x

inside it.

--------------------------------------------------------------------------------

No object x is equal to the set containing x.



Infinite Sets

Some sets contain infinitely many elements!

Theset N=4{0,1, 2, 3, ...} is the set of all the
natural numbers.

« Some mathematicians don't include zero; in this
class, assume that 0 is a natural number.

ThesetZ=4{..,-2,-1,0,1, 2, ... }is the set of
all the integers.

e /7 is from German “Zahlen.”
The set R is the set of all real numbers.

ceceR nmeR, 4 eR, etc.



Describing Complex Sets

 Here are some English descriptions of
infinite sets:

“The set of all even natural numbers.”
“The set of all real numbers less than 137.”

“The set of all negative integers.”

* To describe complex sets like these
mathematically, we'll use set-builder
notation.



Even Natural Numbers

{n|né€Nandniseven }



Even Natural Numbers



Even Natural Numbers

I

/‘

The set ot all n



Even Natural Numbers

/‘

The set ot all

where



Even Natural Numbers

nEN

The set OF a\

where

is a nafural
numbeyr



Even Natural Numbers

nEN nis even
A

The set of a\

where

is a nafural
numbeyr

and v is even



Even Natural Numbers

lneN nis even
The set of as\\\
wheve
is a nafural
number

and n is even

1 0,2,4,0,38,10,12, 14, 10, .



Set Builder Notation

* A set may be specified in set-builder
notation:

{ X | some property x satisfies }
{ x € § | some property x satisfies }
 For example:

{n|né€Nandniseven }

{ C | Cis aset of US currency }
{reR|r<3}

{neN|n<3} (theset{0,1,2})



Combining Sets



Venn Diagrams
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Venn Diagrams

Union

AUB
{1,2,3,4,5}

A=1{1,2,3}
B=1{3,45}

2,
4,



Venn Diagrams

R
oM O

N <H
— M
—

Il
< A



Venn Diagrams

Intersection
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Venn Diagrams

Difference
A-B
11,2}
B
A={1,2 3}
B={3,45}



Venn Diagrams

Difference
A\B
{1,2}
B
A={1,2 3}
B={3,45}
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Venn Diagrams

Symmetric
Difference

AAB
11,2,4,5}

A=1{1,2,3}
B=1{3,45}

2,
4,



Venn Diagrams

AAB



Venn Diagrams




Venn Diagrams for Four Sets

B C

Question To ponder:
why don't we just
draw tour circles?




Venn Diagrams for Five Sets
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Venn Diagrams for Seven Sets

htip://moebio.com/research/sevensets/



http://moebio.com/research/sevensets/

Subsets and Power Sets



Subsets

e A set S is called a subset of a set T
(denoted § C T) if all elements of S are

also elements of T.

 Examples:
*«{1,2,3}C{1,2,3,4}
e {b,c}C{a b,c d}
« {H, He,1i} €C{H, He, Li}
« N CZ (every natural number is an integer)
« Z C R (everyintegeris a real number)



Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S

2002

General intuition:
X € S means you

can point at x {2} E S

inside of S.




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

General intuition:
A C B if you can
form A by circling
elements of B.




Subsets and Elements




Subsets and Elements

(Since 2
isn't a set.)




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S

12}




Subsets and Elements

« We say that § € T if, among the elements of T, one
of them is exactly the object S.

* We say that S C T if S is a set and every element
of S is also an element of T. (S has to be a set for
the statement S C T to be true.)

« Although these concepts are similar, they are not
the same! Not all elements of a set are subsets of
that set and vice-versa.

« We have a resource on the course website, the
Guide to Elements and Subsets, that explores this
in more depth.



p(S) =

This is the power set of S, the set of
all subsets of S. We write the power
set of S as p(S).

Formally, o(S) ={T|TCS }.
(Do you see why?)




What is ¢(9)?

Answer: {J}

Remember that O # {AO}!



Cardinality



Cardinal



Cardinality

 The cardinality of a set is the number of
elements it contains.

* If S is a set, we denote its cardinality as [|S]|.

 Examples:
* |[{whimsy, mirth}| = 2
* |{{a, b}, {c,d. e f g}, {h}}| = 3
* |1{1,2,3,3,3,3,3}] =3
 |[{neN|n<4}|=1]{0,1,2,3}| =4
- |G| =0
* [{9} [ =1




The Cardinality of N

 What is |[N|?
 There are infinitely many natural numbers.

* |IN| can't be a natural number, since it's
infinitely large.



The Cardinality of N

 What is |[N|?
 There are infinitely many natural numbers.

* |IN| can't be a natural number, since it's
infinitely large.

e We need to introduce a new term.
* Let's define Xo = |N].

* Xo is pronounced “aleph-zero,
nought,” or “aleph-null.”

)yt

aleph-



Consider the set

S={n|neNandniseven }.

What is |S|?



ow Big Are These Sets?




ow Big Are These Sets?




Comparing Cardinalities

* By definition, two sets have the same size
if there is a way to pair their elements off
without leaving any elements uncovered.

e The intuition:




Comparing Cardinalities

* By definition, two sets have the same size
if there is a way to pair their elements off
without leaving any elements uncovered.

e The intuition:

Everything has been
paired up, and this
one is all alone,




Infinite Cardinalities

7

N 3 D

LT

S

S={n‘n€Nandniq9\mnl
Two sets have the same size if
there is a way to pair their
elements off without leaving
any elements uncovered




Infinite Cardinalities
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S={n‘nENandniq9\mnl
Two sets have the same size if
there is a way to pair their
elements off without leaving
any elements uncovered




Infinite Cardinalities

S={n|né€Nandniseven }



Infinite Cardinalities

N O 1 2 3 4 5 6 7 8
S 0 2 4 6 8 10 12 14 16 ..

ne 2n

S={n|né€Nandniseven }

S| = |N| = Xo



Infinite Cardinalities



Infinite Cardinalities



Infinite Cardinalities

N

0 1
0 1

Z



Infinite Cardinalities

Two sets have the same size if
there is a way to pair their
elements off without leaving

any elements uncovered




Infinite Cardinalities



Infinite Cardinalities

o 1 2 3 4 5 o6 7 38



Infinite Cardinalities



Infinite Cardinalities




Infinite Cardinalities

N 0 1 2 3 4 5 6 7 8
7 0 1 y 3 4
3 2 1

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

7

|

-4

|

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.



Infinite Cardinalities

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.



Important Question:

Do all infinite sets have
the same cardinality?






p(S) =




S=4{a,b,c, d}

p(S) = {
A,
{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b,d}, {c, d}
{a, b, c}, {a, b,d}, {a, c,d}, {b, c, d},
{a, b, c, d}

}
S| < |0 (S)]



If |S| is infinite, what is the
relation between |S| and |p(S)]?

Does |S| = |p(S)]?



If |S| = |p(S)|, we can pair up the elements
of S and the elements of (S) without
leaving anything out.



If |S| = |p(S)|, we can pair up the elements
of S and the elements of ¢(S) without
leaving anything out.



If |S| = |p(S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.



If |S| = |p(S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.



If |S| = |p(S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.

What would that look like?



X0 €

X1 €

X 2 >

X0,
X3,
X0,
X1,
X2,

X0,

X2,
X5,
X1,

X4,



X0 €

X1 €

X 2 >

X0

X1

X2

X3

X4

X5

X0,
X3,
X0,
X1,
X2,

X0,

X2,

X1,

X4,




X €

X1 €

X2 >

X0 X1 X2 X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,




X €

X1 €

X2 ¢—>1

X0 X1 X2 X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,
{ Xo, X2, X5,

Which element is
paired with this
sef?




X €

X1 €

X2 P

X0 X1 X2 X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,

*Flip” this sef,
Swap whal’s

included and

what’s excluded.,




X0 X1 X2 X3 | X4 X5

[ 1 | Which element is
X4 > X2, I R ment

| ' | paired with this
X5 > Xo, X4, X5, ... set?




X1

X3

X4

X5

wWhich element is
paired with this
sef?



X0 X1 X2 X3 | X4 X5

X0 < Xo, X2, X4, cee [

wWhich element is
paired with this
sef?




X €

X0

X1

X2

X3

X4

X5

X0,

X2,

X4,

X1 €

X5,

Which element is
paired with This
sef?




X €

X0

X1

X2 | X3

X4

X5

X0,

X2,

X4,

X1 €

X3,

X5,

Which element is
paired with This
sef?




X €

X1 €

X2 P

X0 X1 X2 X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,

wWhich element is
paired with This
sef?




X €

X1 €

X2 P

X0 X1 X2 X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,

wWhich element is
paired with This
sef?




The Diagonalization Proot

 No matter how we pair up elements of S and
subsets of S, the complemented diagonal won't
appear in the table.

 In row n, the nth element must be wrong.

 No matter how we pair up elements of S and
subsets of S, there is always at least one subset
left over.

* This result is Cantor's theorem: Every set is
strictly smaller than its power set:

If S is a set, then |S| < |p(S)].



Two Infinities...

By Cantor's Theorem:

IN| < [p(N)]



...And Beyond!

By Cantor's Theorem:
|IN
|»(N)
|9(0(N))
|9 (p(p(N)))

AN AN AN A

p(N)]

p(p(N))|
p(p(p(N)))]
p(p(p(p(N))))]

 Not all infinite sets have the same size!

 There is no biggest infinity!

 There are infinitely many infinities!



What does this have to do
with computation?



“The set of all computer programs”

“The set of all problems to solve”



Things on Strings

« A string is a sequence of characters.
 Two fun facts about strings:

 There are at most as many programs as there are
strings. (All programs are strings)

 There are at least as many problems as there are sets of
strings.

 There’s an appendix to this slide deck that provides
an overview of why these claims are true.

* These facts, plus Cantor’s theorem, have terrifying
implications.



Every computer program is a string.

So, the number of programs is at most the
number of strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| = |Strings| < |p(Strings)| = |Problems|




Every computer program is a string.

So, the number of programs is at most the
number of strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| < |Problems]




There are more problems to
solve than there are programs
to solve them.

|Programs| < |Problems]




It Gets Worse

« Using more advanced set theory, we can
show that there are infinitely more
problems than solutions.

 In fact, if you pick a totally random
problem, the probability that you can
solve it is zero.

 More troubling fact: We've just shown
that some problems are impossible to
solve with computers, but we don't know
which problems those are!



We need to develop a more nuanced
understanding of computation.



Where We're Going

- What makes a problem impossible to solve
with computers?

* Is there a deep reason why certain problems can't be
solved with computers, or is it completely arbitrary?

« How do you know when you're looking at an
impossible problem?

» Are these real-world problems, or are they highly
contrived?

« How do we know that we're right?

« How can we back up our pictures with rigorous
proofs?

« How do we build a mathematical framework for
studying computation?



Next Time

« Mathematical Proof

« What is a mathematical proof?
« How can we prove things with certainty?



Appendix: String Things



Strings and Programs

 The source code of a computer program is just a
(long, structured, well-commented) string of text.

« All programs are strings, but not all strings are
necessarily programs.

-----
~~~~~
2 ~

:'"All possible | All possible
. programs strings

4
4

"4
§~. ‘¢
Ty mm="

|Programs| = |Strings)|



Strings and Problems

e There is a connection between the number
of sets of strings and the number of
problems to solve.

* Let S be any set of strings. This set S gives
rise to a problem to solve:

Given a string w, determine whether w € S.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set
S={"a","b", "c", ..., "Z2" }
 From this set S, we get this problem:

Given a string w, determine whether
w is a single lower-case English letter.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set

s=4{"0" "1" "2"%, ..., "9", "10", "11°", ... }
 From this set S, we get this problem:

Given a string w, determine whether
w represents a natural number.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set
S={p]|pisalegal C++ program }
 From this set S, we get this problem:

Given a string w, determine whether
wis a legal C++ program.



Strings and Problems

* Every set of strings gives rise to a unique
problem to solve.

 Other problems exist as well.

-----
~~~~~
’ ~

!/

¢ Problems & Al hossible

. formed from | e
+sets of strings/ P

S
.

"4
§~. ‘¢
Taymm="

|Sets of Strings| = |Problems]|
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