
  

Mathematical Proofs



  

Outline for Today

● How to Write a Proof
● Synthesizing definitions, intuitions, and 

conventions.
● Proofs on Numbers

● Working with odd and even numbers.
● Universal and Existential Statements

● Two important classes of statements.
● Variable Ownership

● Who owns what?



  

What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.



  



  

D
efi

n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?
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What does this 
theorem mean? 
Why, intuitively, 

should it be true?
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format for writing a proof? 
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Writing our First Proof



  

Theorem: If n is an even integer,
then n2 is even.
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Theorem: If n is an even integer,
then n2 is even.



  

Theorem: If n is an even integer,
then n2 is even.



  

An integer n is called even if
there is an integer k where n = 2k.

10

8

0

2 · 5

2 · 4

2 · 0



  

Theorem: If n is an even integer,
then n2 is even.



  

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s

What terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  Theorem: If n is an even integer, then n2 is even.

22  =  4 = 2 · 2
 

102  =  100 = 2 · 50
  

02  =  0 = 2 · 0
 

(-8)2  =  64 = 2 · 32
 

n2   =   = 2 · ?

Let’s Try Some Examples!

What’s the 
pattern? How do 
we predict this?



  Theorem: If n is an even integer, then n2 is even.

n

Let’s Draw Some Pictures!



  Theorem: If n is an even integer, then n2 is even.

k k

Let’s Draw Some Pictures!



  Theorem: If n is an even integer, then n2 is even.

k k

2k

Let’s Draw Some Pictures!

n2 = 2(2k2)
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Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We want
to show that n is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We want
to show that n is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We want
to show that n is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



  

Our First Proof! 

Theorem: If n is an even integer, then n2 is even.
 

Proof: Pick an arbitrary even integer n. We need
to show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

This symbol 
means “end of 

proof”
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To prove a statement of the 
form

“If P is true, then Q is true,”

start by assuming that P is true. 
Here, we’re inviting the reader to 
pick their favorite even integer.



  

Our First Proof! 
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To prove a statement of the 
form

“If P is true, then Q is true,”

after assuming P is true, you 
need to show that Q is true. 
Here, we’re telling the reader 

where we’re headed.
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This is the definition of an even 
integer. We need to use this 
definition to make this proof 

rigorous.
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Notice how we use the value of k that we 
obtained above. Giving names to quantities, 
allows us to manipulate them. This is similar 

to variables in programs.
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Our ultimate goal is to prove 
that n2 is even. This means that 
we need to find some m where
n2 = 2m. Here, we're explicitly 
showing how we can do that.
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Hey, that's what 
we said we were 
going to do! 

We’re done now.
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Our Next Proof



  

Theorem: For any integers m and n,
if m and n are odd, then m + n is even.
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Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



  

An integer n is called odd if
there is an integer k where n = 2k+1.

11

7

1

2 · 5 + 1

2 · 3 + 1

2 · 0 + 1



  

Going forward, we’ll assume the following:

  1. Every integer is either even or odd.
  2. No integer is both even and odd.
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Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Try Some Examples!

    1 + 1 =     2 =  2 · 1
 

137 + 103 =   240 =  2 · 120
 

   -5 + 5 =     0 =  2 · 0
 

   m + n =  2 · ?
What’s the 

pattern? How do 
we predict this?
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Let’s Draw Some Pictures!



  

Theorem: For any integers m and n,
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Let’s Do Some Math!
k r

2k+1 2r+1



  

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Do Some Math!
k r

2k+1 2r+1

(2k+1) + (2r+1) = 2(k + r + 1)

1
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m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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We ask the reader to make an arbitrary 
choice. Rather than specifying what m and 
n are, we’re signaling to the reader that 
they could, in principle, supply any choices 

of m and n that they’d like.
 

By letting the reader pick m and n 
arbitrarily, anything we prove about m and 
n will generalize to all possible choices for 

those values.
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m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

To prove a statement of the form

“If P is true, then Q is true,”

start by assuming that P is true.
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         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

To prove a statement of the form

“If P is true, then Q is true,”

after assuming P is true, you need to 
show that Q is true.



  

Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

Numbering these equalities lets us refer 
back to them later on, making the flow of 

the proof a bit easier to understand.



  

Theorem: For any integers m and n, if m and n are odd, then
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Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such that
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By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1
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         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

This is a complete sentence! Proofs are 
expected to be written in complete 

sentences, so you’ll often use 
punctuation at the end of formulas.

 

We recommend using the “mugga mugga” 
test – if you read a proof and replace 
all the mathematical notation with “mugga 
mugga,” what comes back should be a 

valid sentence.



  

Theorem: For any integers m and n, if m and n are odd, then
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Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■



  

Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



  

Universal and Existential Statements



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.
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Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

This result is true for every possible 
choice of odd integer n. It’ll work 
for n = 1, n = 137, n = 103, etc.



  

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

We aren’t saying this is true for 
every choice of r and s. Rather, 
we’re saying that somewhere out 

there are choices of r and s where 
this works.



  

Universal vs. Existential Statements

● A universally-quantified statement is a 
statement of the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existentially-quantified statement is 

a statement of the form
There is some x where [some-property] holds for x.

● How do you prove an existentially-
quantified statement?



  

Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existentially-quantified statement of the 
form
There is an x where [some-property] holds for x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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Theorem: For any odd integer n,

there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2



  

1 = ___ 2 – ___ 2

3 = ___ 2 – ___ 2

5 = ___ 2 – ___ 2

7 = ___ 2 – ___ 2

9 = ___ 2 – ___ 2

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

1 = ___ 2 – ___ 2

3 = 2 2 – 1 2

5 = 3 2 – 2 2

7 = 4 2 – 3 2

9 = 5 2 – 4 2

1 = 1 2 – 0 2

We’ve got a 
pattern – but 
why does this 

work?



  

k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k



  

k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k

(k+1)2  –  k2  =  2k+1
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Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.

Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■
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We ask the reader to make an arbitrary 
choice. Rather than specifying what n is, 
we’re signaling to the reader that they 

could, in principle, supply any choice n that 
they’d like.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.

Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■

As always, it’s helpful to 
write out what we need 
to demonstrate with the 

rest of the proof.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.

Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■

We’re trying to prove 
an existential 

statement. The easiest 
way to do that is to 
just give concrete 

choices of the objects 
being sought out.



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
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Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
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This means that r2 – s2 = n, which is what we needed 
to show. ■



  

Time-Out for Announcements!



  

Working in Pairs

● Problem Set Zero is due this Friday at 
2:30PM. It must be completed individually.

● After that, the remaining problem sets can be 
done individually or in pairs.

● We have advice about how to work effectively 
in pairs up on the course website – check the 
“Guide to Partners.”

● Want to work in a pair, but don’t know who to 
work with? Fill out this Google form and 
we’ll connect you with a partner on Friday.

https://forms.gle/iLnbTRqjozvWtvp29


  

CURIS Poster Session

● CURIS is the CS department’s undergraduate research 
program. It’s a great way to get involved in research!

● There’s a CURIS poster session showcasing work from 
the summer going on from 3PM – 5PM Friday in the 
Engineering Quad. Feel free to stop on by!

● Interested in seeing what research projects are open 
right now? Visit https://curis.stanford.edu.

● Have questions about research or how CURIS works? 
Email the CURIS mentors, PhD students who answer 
questions about research:

curis-mentors@cs.stanford.edu

https://curis.stanford.edu/
mailto:curis-mentors@cs.stanford.edu


  

Qt Creator Help Session

● The lovely CS106B staff have invited all y’all to 
join them for a Qt Creator Help Session this 
evening if you’re having trouble getting Qt 
Creator up and running on your system.

● Runs 7:00PM – 9:00PM in the basement of the 
Huang building (just around the corner from 
us!)

● SCPD students – please reach out to us if you 
need help setting things up. We’ll do our best to 
help out.



  

Back to CS103!



  

Theorem: If n is an integer,
then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.
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Floors and Ceilings

● The notation ⌈x⌉ represents the ceiling of x, the 
smallest integer greater than or equal to x.

⌈1⌉ = 1          ⌈1.5⌉ = 2

⌈-1⌉ = -1        ⌈-1.5⌉ = -1
● The notation ⌊x⌋ represents is the floor of x, the 

largest integer less than or equal to x.

⌊1⌋ = 1          ⌊1.5⌋ = 1

⌊-1⌋ = -1        ⌊-1.5⌋ = -2

-3 -2 -1 0 1 2 3
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  Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

Let’s Try Some Examples!

⌈⁰/₂⌉ ⌊⁰/₂⌋+ = 0 + 0 = 0

⌈¹/₂⌉ ⌊¹/₂⌋+ = 1 + 0 = 1

⌈²/₂⌉ ⌊²/₂⌋+ = 1 + 1 = 2

⌈³/₂⌉ ⌊³/₂⌋+ = 2 + 1 = 3

⌈⁴/₂⌉ ⌊⁴/₂⌋+ = 2 + 2 = 4



  Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

Let’s Draw Some Pictures!

k kⁿ/₂⌈ⁿ/₂⌉ ⁿ/₂

n = 2k

⌊ⁿ/₂⌋



  

k+1 k⌈ⁿ/₂⌉ ⌊ⁿ/₂⌋

Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

Let’s Draw Some Pictures!

n = 2k + 1
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Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an integer. We will show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k
2 ⌉+ ⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋

= 2 k

= n .

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k+1
2 ⌉+ ⌊2 k+1

2 ⌋
= ⌈k+

1
2 ⌉+ ⌊k+

1
2 ⌋

= (k+1)+k

= 2 k+1

= n .
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This is called a proof by cases (or 
proof by exhaustion). We split 
apart into one or more cases and 
confirm that the result is indeed 

true in each of them.
 

(Think of it like an if/else or switch 
statement.)
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At the end of a split into cases, it’s 
a nice courtesy to explain to the 

reader what it was that you 
established in each case.
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Each of these variables has a 
distinct, assigned value.

 

Each variable was either picked by 
the reader, picked by the writer, or 
has a value that can be determined 

from other variables.



  

Who Owns What?

● The reader chooses and owns a value if you use wording 
like this:
● Pick a natural number n.
● Consider some n ∈ ℕ.
● Fix a natural number n.
● Let n be a natural number.

● The writer (you) chooses and owns a value if you use 
wording like this:
● Let r = n + 1.
● Pick s = n.

● Neither of you chooses a value if you use wording like this:
● Since n is even, we know there is some k ∈ ℤ where n = 2k.
● Because n is odd, there must be some integer k where n = 2k + 1.
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What does
”for any even 242”

mean?
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Every variable needs a value.

Avoid talking about “all x” or “every x”
when manipulating something 

concrete.

To prove something is true for any 
choice of a value for x, let the reader 

pick x.



  

Once you’ve said something like

Let x be an integer.
Consider an arbitrary x ∈ ℤ.

Pick any x.

Do not say things like the following:

This means that for any x ∈ ℤ …
So for all x ∈ ℤ …
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Let n = 1, which means that m+1 is odd.
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Reader Picks

Hold on! I
already chose
a value for n!
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Proof Writer (You) Proof Reader

m = 166

Reader Picks

⚠ ⚠

n = 1

Writer Picks

Do we even
need n here?
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Proofs as a Dialog

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks



  

Be mindful of who owns what variable.

Don’t change something you don’t own.

You don’t always need to name things, 
especially if they already have a name.



  

To Recap



  

Writing a good proof requires a blend of
definitions, intuitions, and conventions.

Conventions

In
tu

ition
s
D

efi
n
it

io
n
s



  

Definitions tell us what we need to do in a proof. 
Many proofs directly reference these definitions.

An integer n is even if there 
is an integer k where n = 2k.

An integer n is odd if there is 
an integer k where n = 2k+1.



  

Building intuition for results requires creativity, 
trial, and error.

Let’s Draw Some Pictures!

Let’s Do Some Math!

Let’s Try Some Examples!



  

Mathematical proofs have established conventions 
that increase rigor and readability.

● Prove universal 
statements by 
making arbitrary 
choices.

● Prove existential 
statements by 
making concrete 
choices.

● Prove “If P, then Q” 
by assuming P and 
proving Q.

● Write in complete 
sentences.

● Number sub-
formulas when 
referring to them.

● Summarize what 
was shown in 
proofs by cases.

● Articulate your 
start and end 
points.



  

Your Action Items

● Read “Guide to ∈ and ⊆.”
● You’ll want to have a handle on how these concepts are 

related, and on how they differ.
● Read “Guide to Proofs.”

● This resource covers proofwriting strategies and 
conventions and is an essential complement to this 
lecture.

● Read “Guide to Partners.”
● It’s all about how to work effectively in pairs. Mull this 

over so you’re ready to go for Problem Set 1.
● Finish and submit Problem Set 0.

● Don’t put this off until the last minute!



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.
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