Mathematical Proofts



Outline for Today

« How to Write a Proof

« Synthesizing definitions, intuitions, and
conventions.

 Proofs on Numbers
 Working with odd and even numbers.
 Universal and Existential Statements
 Two important classes of statements.
 Variable Ownership

* Who owns what?



What is a Proof?



A proof is an argument that
demonstrates why a conclusion is true,
subject to certain standards of truth.



A mathematical proof is an argument

that demonstrates why a mathematical

statement is true, following the rules of
mathematics.






What terms are

used in this proof? °
What do they

formally mean?



What does this

theorem mean?
: Why, intuitively,
should it be true?
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What does this

theorem mean?
: Why, intuitively,
should it be true?

What terms are

used in this proof? °
What do they

formally mean?

Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Writing our First Proof



Theorem: If n is an even integer,
then n4 is even.



What terms are

used in this proof? °
What do they

formally mean?



Theorem: If n is an even integer,
then n4 is even.



Theorem: If n is an even integer,
then n? 1s even.



An integer n is called even if
there is an integer k where n = 2k.



Theorem: If n is an even integer,
then n4 is even.



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?

©
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Let’s Try Some Examples!

22 =4 =22

102 = 100 =2-50

02 =0 =2-0

(-8)? =064 =2-32

n? =27 What's the

paffern? How do
we predict this?

Theorem: If n is an even integer, then n? is even.



[L.et’s Draw Some Pictures!
n

Theorem: If n is an even integer, then n? is even.



Let’'s Draw Some Pictures!
K K

A A

Theorem: If n is an even integer, then n? is even.



Let’'s Draw Some Pictures!
K K

AL AL

n: = 2(2k?)

Theorem: If n is an even integer, then n? is even.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Our First Proof!

Theorem: If n is an even integer, then n? is even.



Our First Proof!

Theorem: If n is an even integer, then n? is even.
Proof:



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n.
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Our First Proof!

Theorem: If n is an even integer, then n? is even.
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Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

n: = (2k)?



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

(2k)?
4 k>

n2



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

n® = (2k)>
= 4k?
= 2(2k?).



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

n® = (2k)>
= 4k?
= 2(2k?).

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
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= 4Kk?
= 2(2k?).
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(namely, 2k?) where n? = 2m. Theretfore, n?
i1s even, which is what we wanted to show.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

n? = (2k)?
= 4Kk?
= 2(2k?).
From this, we see that there is an integer m

(namely, 2k?) where n? = 2m. Theretfore, n?
1S even, which is what we wanted to show. B



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

y 5 This symbol
& ; Elzklé) means ‘end of
= 2(2K2). proot”

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m. Therefore, n? ‘/
i1s even, which is what we wanted to show.




Our First Proof!

Pick an arbitrary even integer n.

To prove a stafement ot the
form

“If P is true, then Q is true,”

start by assuming That P is True,
Here, we're inviting The reader o
pick their tavorife even infeger.,




Our First Proof!

We need
to show that n? is even.

To prove a stafement ot the
form

“If P is true, then Q is true,”

atfer assuming P is frue, you
need To show Thal Q is True.
Here, we've Telling the reader

where we're headed,




Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that

1 This is the definition ot an even
infeger. We need fo use this
definition fo make this proot

From this, we s¢ rIQOrous .
(namely, 2k?) wh
1S even, which is what we wanted to show ]




Our First Proof!

Notice how we use the value ot k thal we
obtained above, Giving names to gquantifies,
allows us to manipulate them., This is similar
fo variables in programs.

This means that

n® = (2k)>
= 4Kk?
= 2(2Kk?).



Our First Proof!

Our ulfimate goal is To prove
that n2 is even, This means That
we need fo find some m where
n2 =2m, Here, we're explicitly
showing how we can do That,

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need

to show that n? is even.

Since n is even, there is some integer k such
Hey, that's what
we said we were
going to dor
We're done now.,

that n = 2k. This means that
n? = (2k)>?
= 4 k>
= 2(2k?).

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m. Theretore, n?
i1s even, which is what we wanted to show.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Pick an arbitrary even integer n. We need
to show that n? is even.

Since n is even, there is some integer k such
that n = 2k.This means that

n? = (2k)?
= 4Kk?
= 2(2k?).
From this, we see that there is an integer m

(namely, 2k?) where n? = 2m. Theretfore, n?
1S even, which is what we wanted to show. B



Our Next Proof



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



What terms are

used in this proof? °
What do they

formally mean?



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



1 20+

An integer n is called odd if
there is an integer k where n = 2k+1.



Going forward, we’ll assume the following:

1. Every integer is either even or odd.
2. No integer is both even and odd.



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?
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Let’s Try Some Examples!

1+1 = 2 =2-1
137 + 103 = 240 = 2-120
-5+5 = 0 =2-0
m + n = 27
What's The

paffern? How do
we predict This?

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



[L.et’s Draw Some Pictures!

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



[L.et’s Draw Some Pictures!

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Let’s Do Some Math!

2k+1 2r+1

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Let’s Do Some Math!

k ::1::r

2k+1 2r+1

(2k+1) + 2r+1) =2k +r+ 1)

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof:
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odd.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.
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Since m is odd, we know that there is an integer k where
m =2k + 1. (1)
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m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
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Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k+r+1).



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, kK + r+ 1)
such that m + n = 2s.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



For any integers m and n

Consider any arbitrary integers m and n

We ask the reader To make an arbifrary

choice, Rather than specitying whal m and

n are, we're signaling o the reader that

They could, in principle, supply any choices
of m and n that theyd like,

By letting the reader pick m and n
arbifrarily, anything we prove about m and
n will generalize To all possible choices tor

those values.,




Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

since misl To prove a statement of the form
Similarly, H “If P is true, then Q is true,” that
By adding start by assuming that P is True,
m+n=2k+1+2r+1
=2k + 2r + 2
=2k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as

required. W



Theorem: For any integers m and n, if m and n are odd, then
m + n 1is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m i ' '
To prove a stafement of the form

Similarly, “If P is true, then Q is true,” ch that

By addind atter assuming P is frue, you need to
show thal Q is True.

=2(k +r+1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as

required. W



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Numbering These equalities lets us reter
back To them lafer on, making the tlow ot
the proof a bit easier To understand.

Proof: Consider any
odd. We need to

Since m is odd, w

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



Since m is odd, we know that there is an integer k where
m =2k + 1.

This is a complete senfencer Proofs are
expected 1o be written in complete
senfences, so youwll offen use
punctuation af the end of formulas,

We recommend using The *mugga mugga’
test - if you read a proot and replace
all the mathematical notation with *mugga
mugga,” whal comes back should be a
valid senfence,




Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m = 2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



Some Little Exercises

e Here’s a list of other theorems that are true about odd
and even numbers:

« Theorem: The sum and difference of any two even numbers is
even.

e Theorem: The sum and difference of an odd number and an
even number is odd.

« Theorem: The product of any integer and an even number is
even.

« Theorem: The product of any two odd numbers is odd.

« Going forward, we’ll just take these results for granted.
Feel free to use them in the problem sets.

 If you’d like to practice the techniques from today, try
your hand at proving these results!



Universal and Existential Statements



Theorem: For any odd integer n,
there exist integers r and s where r* - s = n.



What terms are

used in this proof? °
What do they

formally mean?



Theorem: For any odd integer n,
there exist integers r and s where r* - s = n.



For any odd integer n

This vesult is fTrue tor every possible
choice ot odd infeger n, IT°ll work
tor n =1, n =131, n - 103, efc,




there exist integers r and s where r? - s2 = n

We aren't sauing this is True for
every choice of v and s, Rather,
we're saying Thal somewhere out

there are choices ot v and s where
This works.




Universal vs. Existential Statements

» A universally-quantified statement is a
statement of the form

For all x, [some-property] holds for x.
 We've seen how to prove these statements.

» An existentially-quantified statement is
a statement of the form

There is some x where [some-property] holds for x.

 How do you prove an existentially-
quantified statement?



Proving an Existential Statement

* Over the course of the quarter, we will
see several different ways to prove an
existentially-quantified statement of the
form

There is an x where [some-property] holds for x.

« Simplest approach: Search far and
wide, find an x that has the right
property, then show why your choice is
correct.



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?
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Let’s Try Some Examples!

1 = 2 _ 2

|
N
N

3

|
N
N

D

|
N
N

7

|
N
N

9

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Let’s Try Some Examples!

1

3

12
3
32
1

52

0
2
2
32

42

We've got a

pattern — buf

why does This
work?

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



[L.et’s Draw Some Pictures!

~

+1

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



[L.et’s Draw Some Pictures!

(k+1)? - k2 = 2k+1

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof:



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k+1.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k+ 1. Now, let r = k+1 and s = k.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see

that
r--s? = (k+1)?-k?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see

that
r--s? = (k+1)?-k?
k?+ 2k + 1 - k?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

r2-s? = (k+1)?-k?
K2 + 2k + 1 - K2
2k + 1



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

r2-s? = (k+1)?-k?
K2 + 2k + 1 - K2
2k + 1

n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

re-s* = (k+1)*-k?
= k*+2k+1-Kk?
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

re-s* = (k+1)*-k?
= k*+2k+1-Kk?
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show. B



I'heorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

since 11 We ask fThe veader fo make an arbitrary Jhere
n = 2kl choice, Rather than specifying what n is, [j& see
that we're signaling o the reader that fhey

could, in principle, supply any choice n that

they'd like,

= 2k +1

= 1.

This means that r? - s? = n, which is what we needed
to show. B



Theorem: For any odd integer n, there exist integers
r and s where r’ - s = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s2 = n.

Since n is odd, we know tk
n=2k + 1. Now, let r = kj
that

As always, s helptul fo
write out what we need |°°

fo demonstrate with the
rest of the prooft.

rr-s? = (k+
k? +
= 2k +1

= N.

This means that r? - s? = n, which is what we needed
to show. B



Theorem: For any odd integer n, there exist integers
r and s where r’ - s = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n =2k + 1. Now, letr =k+1 and s = k. Then we see
that

R (k+1)2| We're Twmq To. prove
an existential
= K+ 2l statement, The easiest
— 2k + 1 way To do that is fo
jusT give concrete
choices of the objects
being sought out,

= N.

This means that r? - s?2 = n,
to show. B




Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

re-s* = (k+1)*-k?
= k*+2k+1-Kk?
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show. B



Time-Out for Announcements!



Working in Pairs

* Problem Set Zero is due this Friday at
2:30PM. It must be completed individually.

« After that, the remaining problem sets can be
done individually or in pairs.

 We have advice about how to work effectively
in pairs up on the course website - check the
“Guide to Partners.”

 Want to work in a pair, but don’t know who to
work with? Fill out this Google form and
we’ll connect you with a partner on Friday.



https://forms.gle/iLnbTRqjozvWtvp29

CURIS Poster Session

 CURIS is the CS department’s undergraduate research
program. It’s a great way to get involved in research!

» There’s a CURIS poster session showcasing work from
the summer going on from 3PM - 5PM Friday in the
Engineering Quad. Feel free to stop on by!

* Interested in seeing what research projects are open
right now? Visit https://curis.stanford.edu.

 Have questions about research or how CURIS works?
Email the CURIS mentors, PhD students who answer
questions about research:

curis-mentors@cs.stanford.edu



https://curis.stanford.edu/
mailto:curis-mentors@cs.stanford.edu

Qt Creator Help Session

* The lovely CS106B statf have invited all y’all to
join them for a Qt Creator Help Session this
evening if you’'re having trouble getting Qt
Creator up and running on your system.

* Runs 7:00PM - 9:00PM in the basement of the
Huang building (just around the corner from
us!)

« SCPD students - please reach out to us if you
need help setting things up. We’ll do our best to
help out.



Back to CS103!



Theorem: If n is an integer,
then [7/2] + |"/2] = n.



What terms are

used in this proof? °
What do they

formally mean?



Floors and Ceilings

 The notation [x] represents the ceiling of x, the
smallest integer greater than or equal to x.

1] =1 [1.5] =2
[-1] = -1 [-1.5] = -1

 The notation | x| represents is the floor of x, the
largest integer less than or equal to x.

1] =1 |11.5] =1
-1] = -1 |-1.5] = -2




2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?

©
<



Let’s Try Some Examples!
[°/2] + 1°2] = 0 + 0 = O
[t2] + [Y/2] = 1
[2/2] + [%/2] = 1
[3/2] + |3/2] = 2
[%2] + |*/2] = 2

+ + +
N —~— = O
= W N =

Theorem: If n is an integer, then [%/2] + |"/2] = n.



[L.et’s Draw Some Pictures!

Theorem: If n is an integer, then [%/2] + |"/2] = n.



[L.et’s Draw Some Pictures!

[/2] |%/2]

n=2k+1

Theorem: If n is an integer, then [%/2] + |"/2] = n.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Theorem: If n is an integer, then |"/2] + ["/2] = n.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that ["/z] + ["/2] = n."~



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even.

Case 2: n is odd.



we consider two cases:

Case 1: n is even.

Case 2: n is odd.

This is called a proof by cases (or
proot by exhaustion). We splif
aparf into one or more cases and

confirm that the result is indeed
frue in each ot them.

(Think ot it like an it /else or switch
statement.)




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

EARE

n

2

n

2

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

2k
2
1

n

2

n

2

+

2k
2

[
XI

+

k]

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,|n| _ '%+%‘
21 |2 2 2
= |k|+[k]
= 2Kk

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,|n| _ %+%‘
21 |2 2 2
= |k|+[k]
= 2Kk
= n.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= [k]+| k|
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
nl| |n| _ [2k+1 +[2k+1
2| |2 2 2




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k],|2k
2112 | 2 2
= |k|+[k]
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _ [2k+1] |2k+1
20 12] 2 2
= k+%+k+é—




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k],|2k
2112 | 2 2
= |k|+[k]
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _ [2k+1] |2k+1
20 12] 2 2
= k+%+k+é—

= (k+1)+k



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= |k]+|k]
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§+k+E
= (k+1)+k

= 2k+1



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= [k]+| k|
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§ + k+§
= (k+1)+k
= 2k+1

= n.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,

we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

n

2

n

2

2 k

+

2

E3

2
k|+[k]

= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

n

2

n

2

(2 k+1
2

l2k+1
+
2

1
k_
3

+

1
k_
D

(k+1)+k
2k+1
n.

In either case, we see that |"/2] + ["/2] = n, as required.



AT the end ot a split info cases, if’s
a nice courfesy to explain To the
reader what it was that you
established in each case,

In either case, we see that ["/2] + ["/2] = n



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + ["/2] = n. To do so,

we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

n

2

n

2

2 k

+

2

E3

2
k|+[k]

= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

n

2

n

2

(2 k+1
2

l2k+1
+
2

1
k_
3

+

1
k_
D

(k+1)+k
2k+1
n.

In either case, we see that |"/2] + ["/2] = n, as required. W



Proofs as a Dialog



Prootfs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.




Prootfs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.

N\

Proof Writer (You)



Prootfs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer

k such thatn = 2k + 1.

Now, let z = k - 34.

N\

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Let n be an arbitrary odd integer.

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Let n be an arbitrary odd integer.

© @
Reader Picks

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

© @
Reader Picks

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

@ S @
Reader Picks

k = 68

Neither Picks

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Now, let z = k - 34.

@ S @
Reader Picks

k = 68

Neither Picks

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

N\

Now, let z = k - 34.

n=137

k = 68

z =34

Writer Picks

Proof Writer (You)

Neither Picks

Reader Picks

N\

Proof Reader



Prootfs as a Dialog

N\

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer

k such thatn = 2k + 1.

Now, let z = k - 34.

k = 68

Neither Picks

n=137 0
Reader Picks
z =234
Writer Picks /\

Proof Writer (You) Proof Reader



Proots as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.

! Reader Picks !

k = 68

- Neither Picks
/ \ Writer Picks / \

Proof Writer (You) Proof Reader




Each of these variables has a
distinct, assigned value.

Each variable was either picked by
the reader, picked by the writer, or
has a value that can be determined

from other variables.

n=137

Reader Picks

k = 68

Neither Picks
z =234

Writer Picks



Who Owns What?

* The reader chooses and owns a value if you use wording
like this:

Pick a natural number n.

Consider some n € N.

Fix a natural number n.

Let n be a natural number.

 The writer (you) chooses and owns a value if you use
wording like this:

e Letr=n+ 1.
« Pick s = n.
* Neither of you chooses a value if you use wording like this:

« Since n is even, we know there is some k € Z where n = 2k.
« Because n is odd, there must be some integer k where n = 2k + 1.



Prootfs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that x+1 is odd.

N\

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Let x be an arbitrary even integer.

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Let x be an arbitrary even integer.

@ X = 242 @

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Then for any even x, we know that x+1 is odd.

@ X = 242 @

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Then for any even x, we know that x+1 is odd.

@ X = 242 Q

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

&
N\

for any even x

X = 242 Q

Reader Picks

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Proof Writer (You)

for any even x

X = 242
Reader Picks
—

N—

What does

“for any even 242"

mean?

oof Reader



Prootfs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that x+1 is odd.

N\

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Let x be an arbitrary even integer.

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Let x be an arbitrary even integer.

x = 242

Reader Picks

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Since x is even, we know that x+1 is odd.

x = 242

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Every variable needs a value.

Avoid talking about “all x” or “every x”
when manipulating something
concrete.

To prove something is true for any
choice of a value for x, let the reader
pick x.



Once you’ve said something like
Let x be an integer.
Consider an arbitrary x € Z.
Pick any x.

Do not say things like the following:

This means that foranyx € Z ...
So forall x € Z ...



Prootfs as a Dialog

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Pick two integers m and n where m+n is odd.

Let n = 1, which means that m+1 is odd.

N\ N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Pick two integers m and n where m+n is odd.

N\ N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Pick two integers m and n where m+n is odd.

© ©
Reader Picks
n=100

/ \ Reader Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Let n = 1, which means that m+1 is odd.

© ©
Reader Picks
n=100

/ \ Reader Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Let n = 1, which means that m+1 is odd.

© S
Reader Picks
n=100

/ \ Reader Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

@ m = 103
Reader Picks
n=100

/ \ Reader Picks

Proof Writer (You)

f

Hold on! I

Let n = 1, which means that m+1 is odd.

already chose

-

a value for n!

/

7\

Proof Reader



Prootfs as a Dialog

Letn=1.

Pick any integer m where m+1 is odd.

N\

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\ N\

Proof Writer (You) Proof Reader




Prootfs as a Dialog

N\

Proof Writer (You)

Letn=1.

Writer Picks

N\

Proof Reader



Prootfs as a Dialog

Pick any integer m where m+1 is odd.

/ \ Writer Picks / \

Proof Writer (You) Proof Reader



Prootfs as a Dialog

Pick any integer m where m+1 is odd.

@ e @
Reader Picks

/ \ Writer Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Letn=1.

Pick any integer m where m+1 is odd.

@ e @
Reader Picks

/ \ Writer Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

Do we even

p)
letn=1. need n here-

Pick any integer m where m+1 is odd.

@ m = 166
Reader Picks

/ \ Writer Picks / \

Proof Writer (You) Proof Reader




Prootfs as a Dialog

N\

Pick any integer m where m+1 is odd.

N\

Proof Writer (You) Proof Reader



Prootfs as a Dialog

N\

Pick any integer m where m+1 is odd.

m = 166 @
Reader Picks

Proof Writer (You) Proof Reader



Be mindful of who owns what variable.
Don’t change something you don’t own.

You don’t always need to name things,
especially if they already have a name.



To Recap



Conventions

Writing a good proof requires a blend of
definitions, intuitions, and conventions.



An integer n is even if there
is an integer k where n = 2Kk.
An integer n is odd if there is
an integer k where n = 2k+1.

Definitions tell us what we need to do in a proof.
Many proofs directly reference these definitions.



Let’s Try Some Examples!

Building intuition for results requires creativity
trial, and error. ’



* Prove universal  Write in complete
statements by sentences.
making arbitrary

:  Number sub-
choices.

formulas when

* Prove existential referring to them.
statements by
making concrete
choices.

* Prove “If P, then Q" , Articulate your

by assuming P and start and end
proving Q. points.

e Summarize what
was shown in
proofs by cases.

Mathematical proofs have established conventions
that increase rigor and readability.




Your Action Items

* Read “Guide to € and C.”

* You’'ll want to have a handle on how these concepts are
related, and on how they differ.

* Read “Guide to Proofs.”

« This resource covers proofwriting strategies and
conventions and is an essential complement to this
lecture.

e Read “Guide to Partners.”

 It’s all about how to work effectively in pairs. Mull this
over so you're ready to go for Problem Set 1.

e Finish and submit Problem Set 0.

 Don’t put this off until the last minute!



Next Time

« Indirect Proofs

« How do you prove something without actually proving
it?

« Mathematical Implications

 What exactly does “if P, then Q” mean?
* Proof by Contrapositive

* A helpful technique for proving implications.
* Proof by Contradiction

* Proving something is true by showing it can't be false.
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