

Mathematical Proofs

Outline for Today

- ***How to Write a Proof***
 - Synthesizing definitions, intuitions, and conventions.
- ***Proofs on Numbers***
 - Working with odd and even numbers.
- ***Universal and Existential Statements***
 - Two important classes of statements.
- ***Variable Ownership***
 - Who owns what?

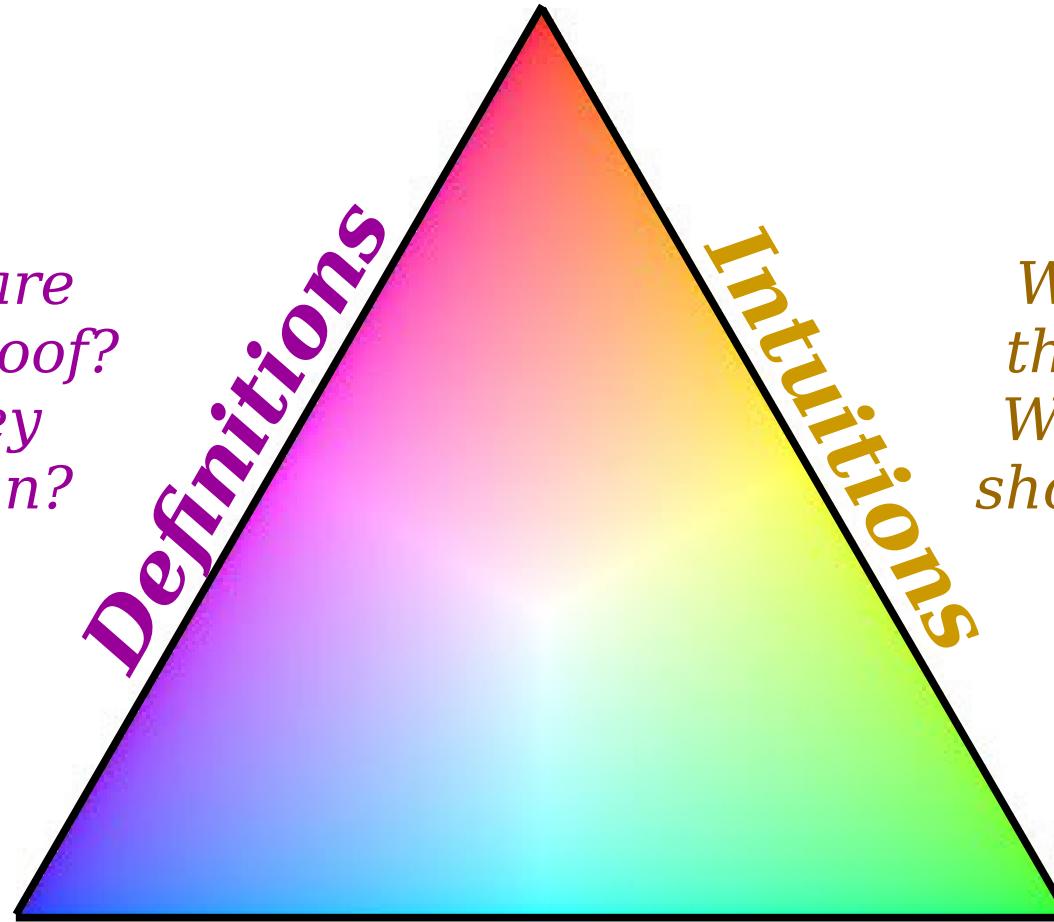
What is a Proof?

A *proof* is an argument that demonstrates why a conclusion is true, subject to certain standards of truth.

A ***mathematical proof*** is an argument that demonstrates why a mathematical statement is true, following the rules of mathematics.

What terms are used in this proof?

What do they formally mean?



*What does this theorem mean?
Why, intuitively, should it be true?*

Conventions

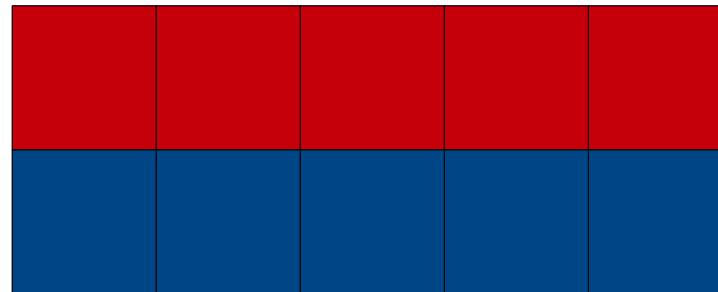
What is the standard format for writing a proof?

What are the techniques for doing so?

Writing our First Proof

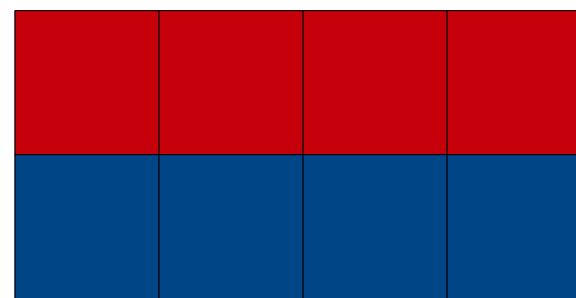
Theorem: If n is an even integer,
then n^2 is even.

10



$2 \cdot 5$

8



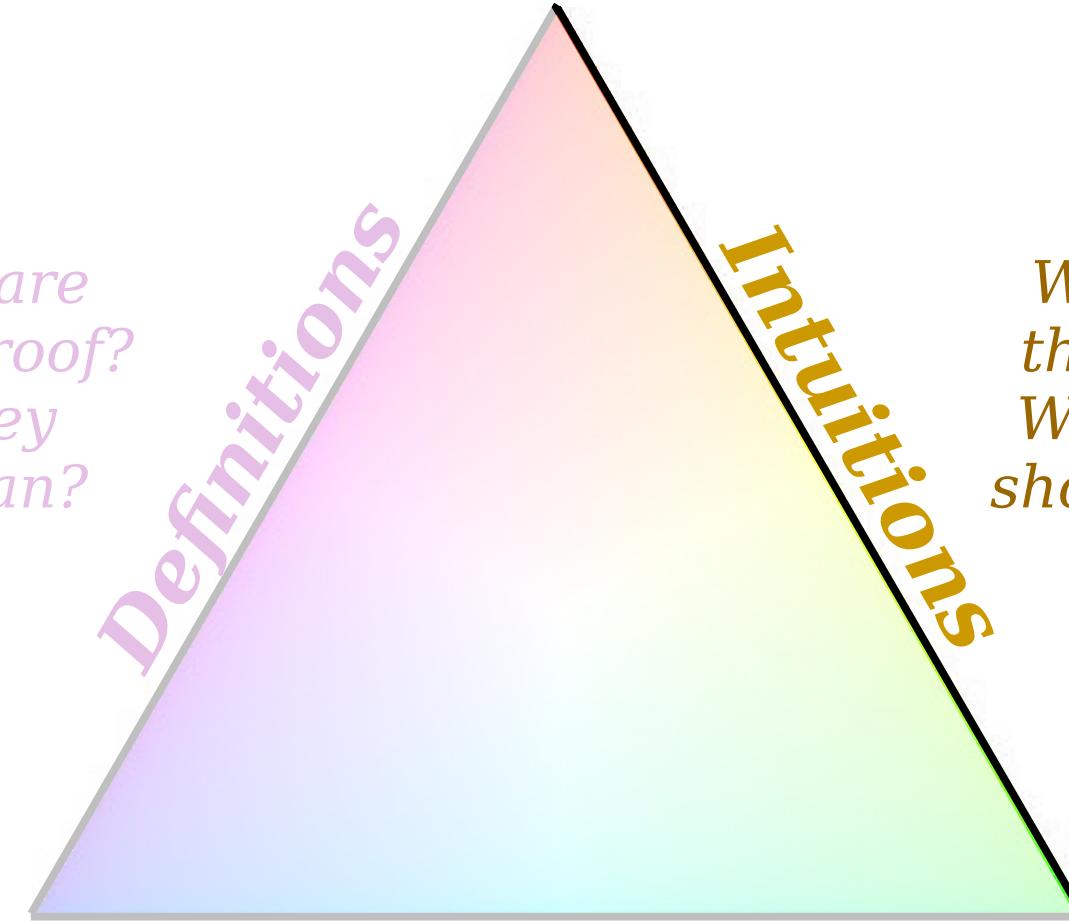
$2 \cdot 4$

0

$2 \cdot 0$

An integer n is called **even** if there is an integer k where $n = 2k$.

*What terms are used in this proof?
What do they formally mean?*



*What does this theorem mean?
Why, intuitively, should it be true?*

*What is the standard format for writing a proof?
What are the techniques for doing so?*

Let's Try Some Examples!

$$2^2 = 4 = 2 \cdot \mathbf{2}$$

$$10^2 = 100 = 2 \cdot \mathbf{50}$$

$$0^2 = 0 = 2 \cdot \mathbf{0}$$

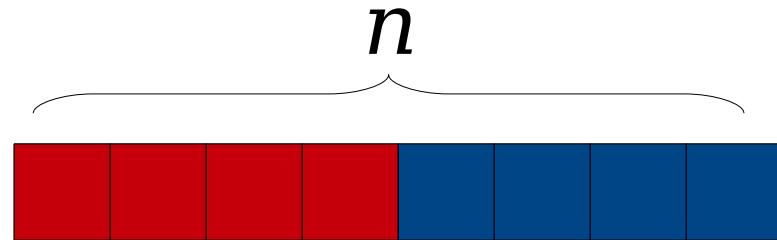
$$(-8)^2 = 64 = 2 \cdot \mathbf{32}$$

$$n^2 = 2 \cdot \mathbf{?}$$

What's the pattern? How do we predict this?

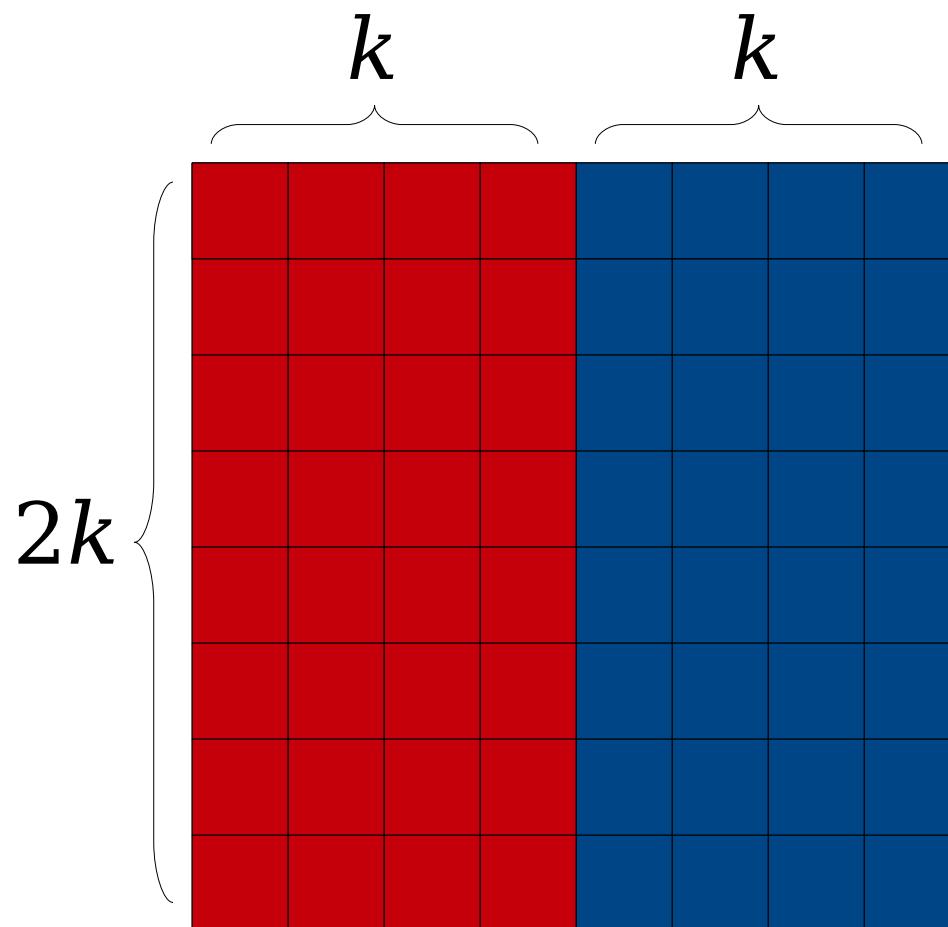
Theorem: If n is an even integer, then n^2 is even.

Let's Draw Some Pictures!



Theorem: If n is an even integer, then n^2 is even.

Let's Draw Some Pictures!



$$n^2 = 2(2k^2)$$

Theorem: If n is an even integer, then n^2 is even.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Intuitions

Conventions

What is the standard format for writing a proof?

What are the techniques for doing so?

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

This symbol
means "end of
proof"

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k , such that $n = 2k$. Then

To prove a statement of the form

“If P is true, then Q is true,”

From this, we start by assuming that P is true. (namely, $2k^2$) Here, we’re inviting the reader to is even, which pick their favorite even integer.

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k , such that $n = 2k$. Then

To prove a statement of the form

“If P is true, then Q is true,”

From this, we know that $n^2 = (2k)^2 = 4k^2$ (namely, $2k^2$) is even. This is what we wanted to show. Here, we’re telling the reader where we’re headed.

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k such that $n = 2k$. This means that

This is the definition of an even integer. We need to use this definition to make this proof rigorous.

From this, we see that $n^2 = (2k)^2 = 4k^2$ (namely, $2k^2$) where $n = 2k$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is even, then n^2 is even.

Proof: Pick n to show that n^2 is even. Notice how we use the value of k that we obtained above. Giving names to quantities, allows us to manipulate them. This is similar to variables in programs.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n .

to show that n^2 is even, we need to find some integer m such that

Since n is even, we can write $n = 2k$ for some integer k . Then

Our ultimate goal is to prove that n^2 is even. This means that we need to find some m where $n^2 = 2m$. Here, we're explicitly showing how we can do that.

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

Hey, that's what we said we were going to do!
We're done now.

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our First Proof!

Theorem: If n is an even integer, then n^2 is even.

Proof: Pick an arbitrary even integer n . We need to show that n^2 is even.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$\begin{aligned} n^2 &= (2k)^2 \\ &= 4k^2 \\ &= 2(2k^2). \end{aligned}$$

From this, we see that there is an integer m (namely, $2k^2$) where $n^2 = 2m$. Therefore, n^2 is even, which is what we wanted to show. ■

Our Next Proof

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Conventions

What is the standard format for writing a proof?

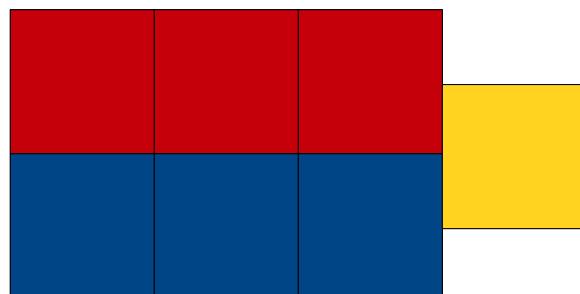
What are the techniques for doing so?

11



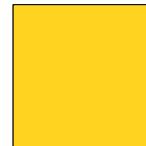
$$2 \cdot 5 + 1$$

7



$$2 \cdot 3 + 1$$

1



$$2 \cdot 0 + 1$$

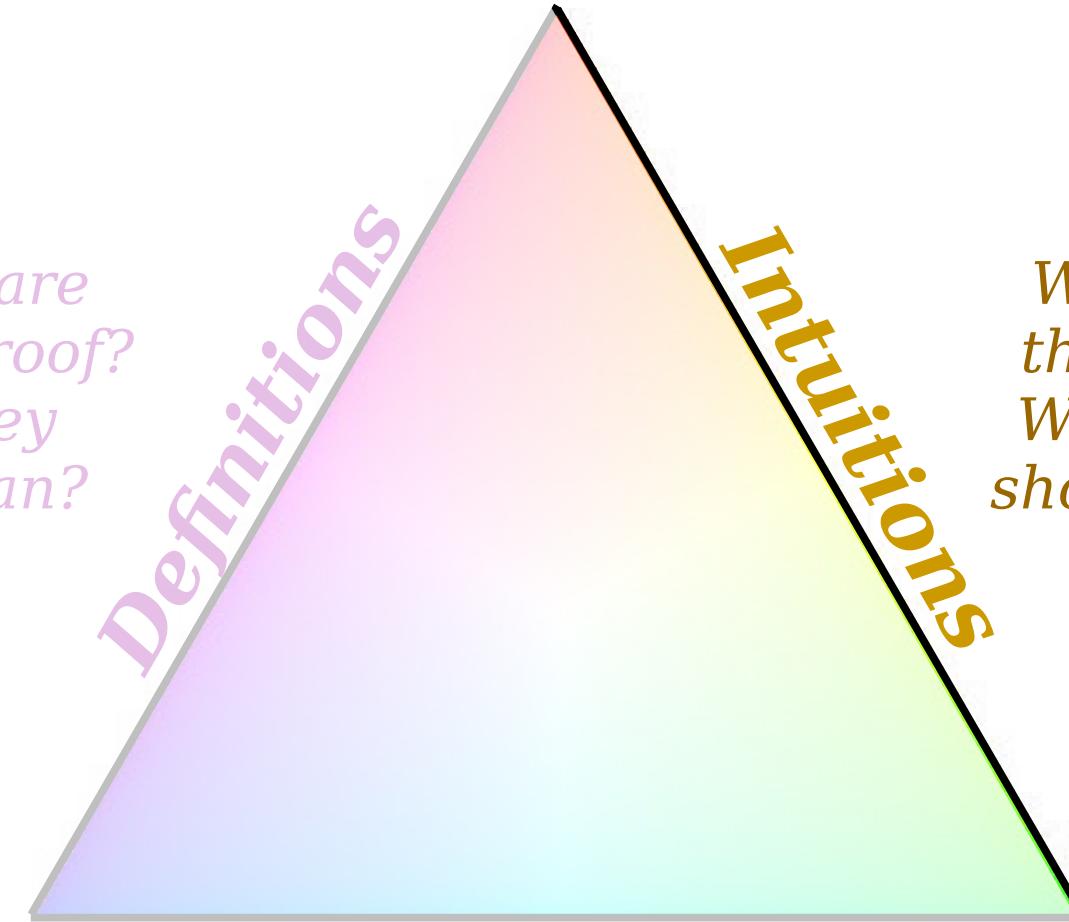
An integer n is called **odd** if there is an integer k where $n = 2k+1$.

Going forward, we'll assume the following:

1. Every integer is either even or odd.
2. No integer is both even and odd.

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

*What terms are used in this proof?
What do they formally mean?*



*What does this theorem mean?
Why, intuitively, should it be true?*

*What is the standard format for writing a proof?
What are the techniques for doing so?*

Let's Try Some Examples!

$$1 + 1 = 2 = 2 \cdot 1$$

$$137 + 103 = 240 = 2 \cdot 120$$

$$-5 + 5 = 0 = 2 \cdot 0$$

$$m + n = 2 \cdot ?$$

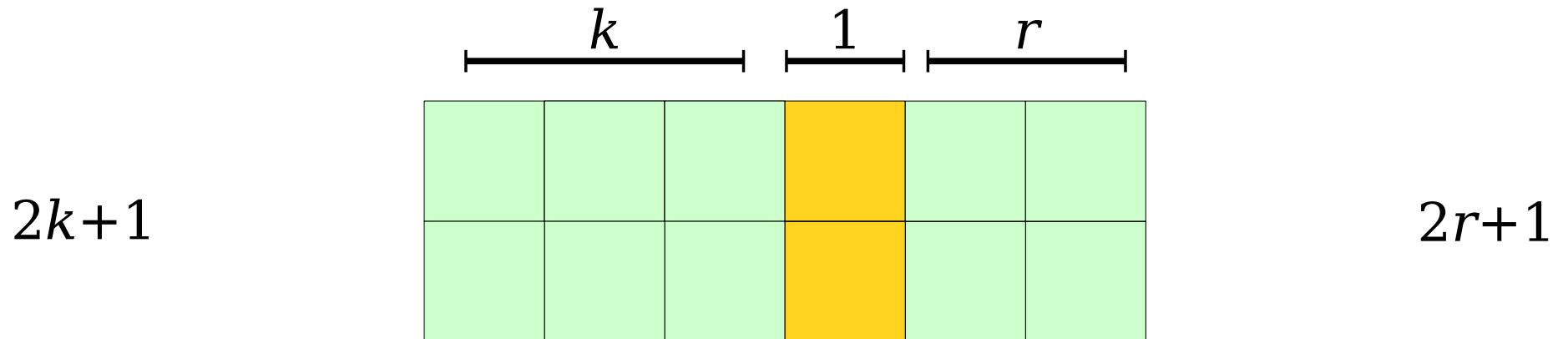
What's the pattern? How do we predict this?

Theorem: For any integers m and n , if m and n are odd, then $m+n$ is even.

Let's Do Some Math!

Theorem: For any integers m and n , if m and n are odd, then $m+n$ is even.

Let's Do Some Math!



$$(2k+1) + (2r+1) = 2(k + r + 1)$$

Theorem: For any integers m and n , if m and n are odd, then $m+n$ is even.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Intuitions

Conventions

What is the standard format for writing a proof?

What are the techniques for doing so?

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$\begin{aligned} m + n &= 2k + 1 + 2r + 1 \\ &= 2k + 2r + 2 \\ &= 2(k + r + 1). \end{aligned} \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

Since m is odd, we can write $m = 2k + 1$ for some integer k .

Similarly, because n is odd, we can write $n = 2j + 1$ for some integer j .

By adding equations (1) and (2), we get

We ask the reader to make an *arbitrary choice*. Rather than specifying what m and n are, we're signaling to the reader that they could, in principle, supply any choices of m and n that they'd like.

By letting the reader pick m and n arbitrarily, anything we prove about m and n will generalize to all possible choices for those values.

Equation (3) tells us that $m + n = 2(k + j) + 2$, which is even. Thus, we have shown that $m + n$ is even, as required. ■

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

Since m is

To prove a statement of the form

Similarly, b

“If P is true, then Q is true,”

By adding

start by assuming that P is true.

$$\begin{aligned} m + n &= 2k + 1 + 2r + 1 \\ &= 2k + 2r + 2 \\ &= 2(k + r + 1). \end{aligned} \tag{3}$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

Since m is odd, there exists an integer k such that $m = 2k + 1$.

To prove a statement of the form

Similarly, "If P is true, then Q is true,"

By adding, after assuming P is true, you need to show that Q is true.

$$\begin{aligned}m + n &= 2k + 2r + 2 \\&= 2(k + r + 1).\end{aligned}\tag{3}$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any odd. We need to show that $m + n$ is even. Since m is odd, we

Numbering these equalities lets us refer back to them later on, making the flow of the proof a bit easier to understand.

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$\begin{aligned} m + n &= 2k + 1 + 2r + 1 \\ &= 2k + 2r + 2 \\ &= 2(k + r + 1). \end{aligned} \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

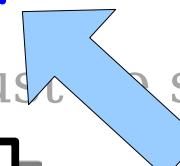
Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

This is a complete sentence! Proofs are expected to be written in complete sentences, so you'll often use punctuation at the end of formulas.

We recommend using the "mugga mugga" test - if you read a proof and replace all the mathematical notation with "mugga mugga," what comes back should be a valid sentence.



$$n = 2r + 1 \quad (2)$$

arn that

$$- 2r + 1$$

$$+ 2$$

$$+ 1).$$

(3)

nteger s (namely, $k + r + 1$) see that $m + n$ is even, as

Theorem: For any integers m and n , if m and n are odd, then $m + n$ is even.

Proof: Consider any arbitrary integers m and n where m and n are odd. We need to show that $m + n$ is even.

Since m is odd, we know that there is an integer k where

$$m = 2k + 1. \quad (1)$$

Similarly, because n is odd there must be some integer r such that

$$n = 2r + 1. \quad (2)$$

By adding equations (1) and (2) we learn that

$$\begin{aligned} m + n &= 2k + 1 + 2r + 1 \\ &= 2k + 2r + 2 \\ &= 2(k + r + 1). \end{aligned} \quad (3)$$

Equation (3) tells us that there is an integer s (namely, $k + r + 1$) such that $m + n = 2s$. Therefore, we see that $m + n$ is even, as required. ■

Some Little Exercises

- Here's a list of other theorems that are true about odd and even numbers:
 - **Theorem:** The sum and difference of any two even numbers is even.
 - **Theorem:** The sum and difference of an odd number and an even number is odd.
 - **Theorem:** The product of any integer and an even number is even.
 - **Theorem:** The product of any two odd numbers is odd.
- Going forward, we'll just take these results for granted. Feel free to use them in the problem sets.
- If you'd like to practice the techniques from today, try your hand at proving these results!

Universal and Existential Statements

Theorem: For any odd integer n ,
there exist integers r and s where $r^2 - s^2 = n$.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Conventions

What is the standard format for writing a proof?

What are the techniques for doing so?

Theorem: For any odd integer n ,
there exist integers r and s where $r^2 - s^2 = n$.

Theorem: For any odd integer n ,
there exist integers r and s where $r^2 - s^2 = n$.

This result is true for every possible choice of odd integer n . It'll work for $n = 1$, $n = 137$, $n = 103$, etc.

Theorem: For any odd integer n ,
there exist integers r and s where $r^2 - s^2 = n$.

We aren't saying this is true for
every choice of r and s . Rather,
we're saying that **somewhere out
there** are choices of r and s where
this works.

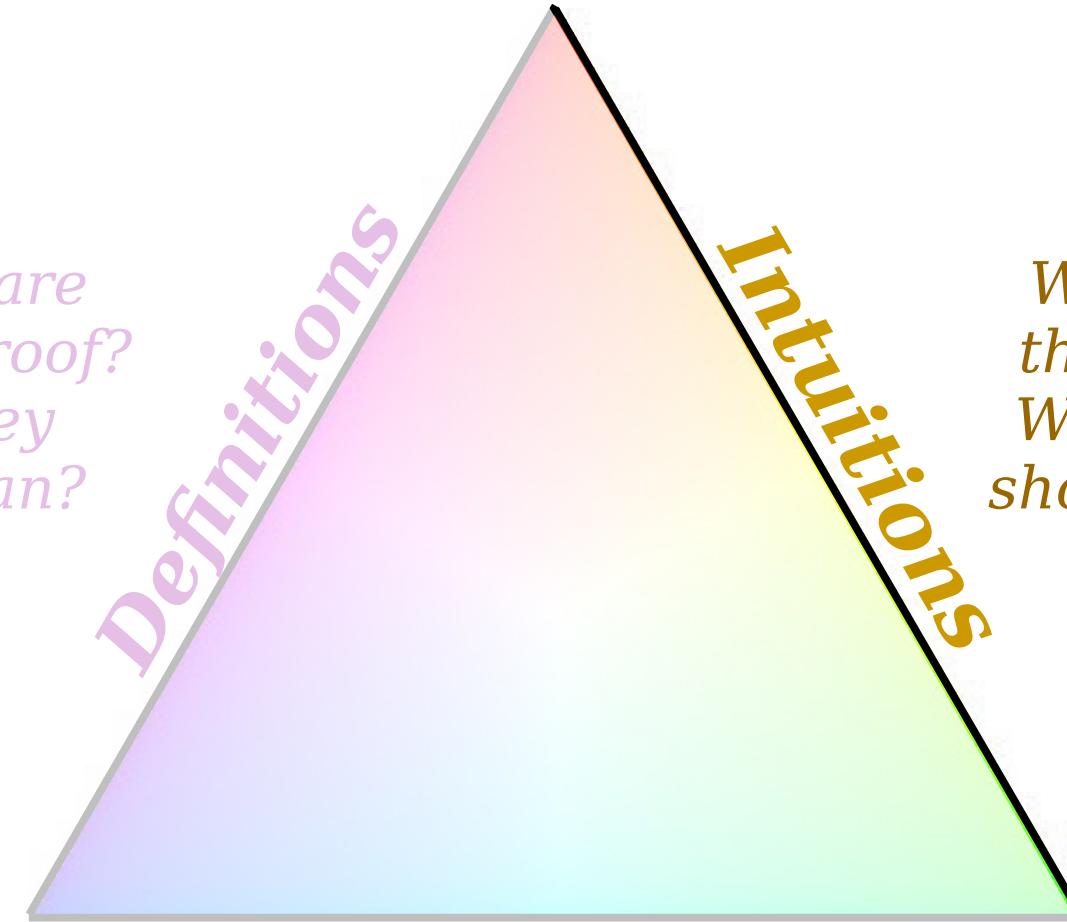
Universal vs. Existential Statements

- A ***universally-quantified statement*** is a statement of the form
For all x , [some-property] holds for x .
- We've seen how to prove these statements.
- An ***existentially-quantified statement*** is a statement of the form
There is some x where [some-property] holds for x .
- How do you prove an existentially-quantified statement?

Proving an Existential Statement

- Over the course of the quarter, we will see several different ways to prove an existentially-quantified statement of the form
There is an x where [some-property] holds for x .
- ***Simplest approach:*** Search far and wide, find an x that has the right property, then show why your choice is correct.

*What terms are used in this proof?
What do they formally mean?*



*What does this theorem mean?
Why, intuitively, should it be true?*

*What is the standard format for writing a proof?
What are the techniques for doing so?*

Let's Try Some Examples!

$$1 = 1^2 - 0^2$$

$$3 = 2^2 - 1^2$$

$$5 = 3^2 - 2^2$$

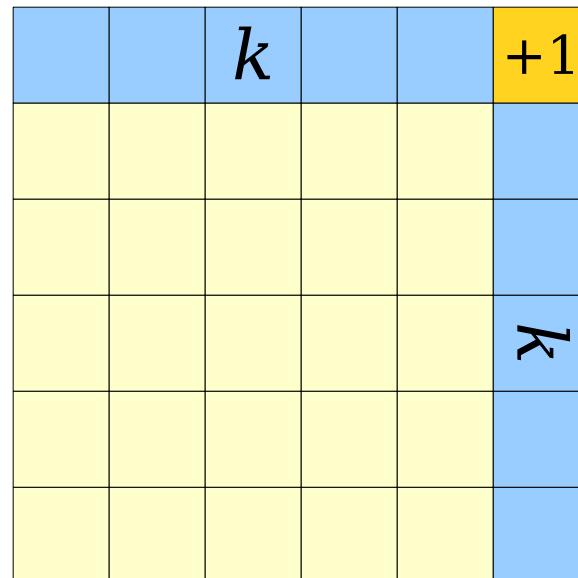
$$7 = 4^2 - 3^2$$

$$9 = 5^2 - 4^2$$

We've got a pattern - but why does this work?

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

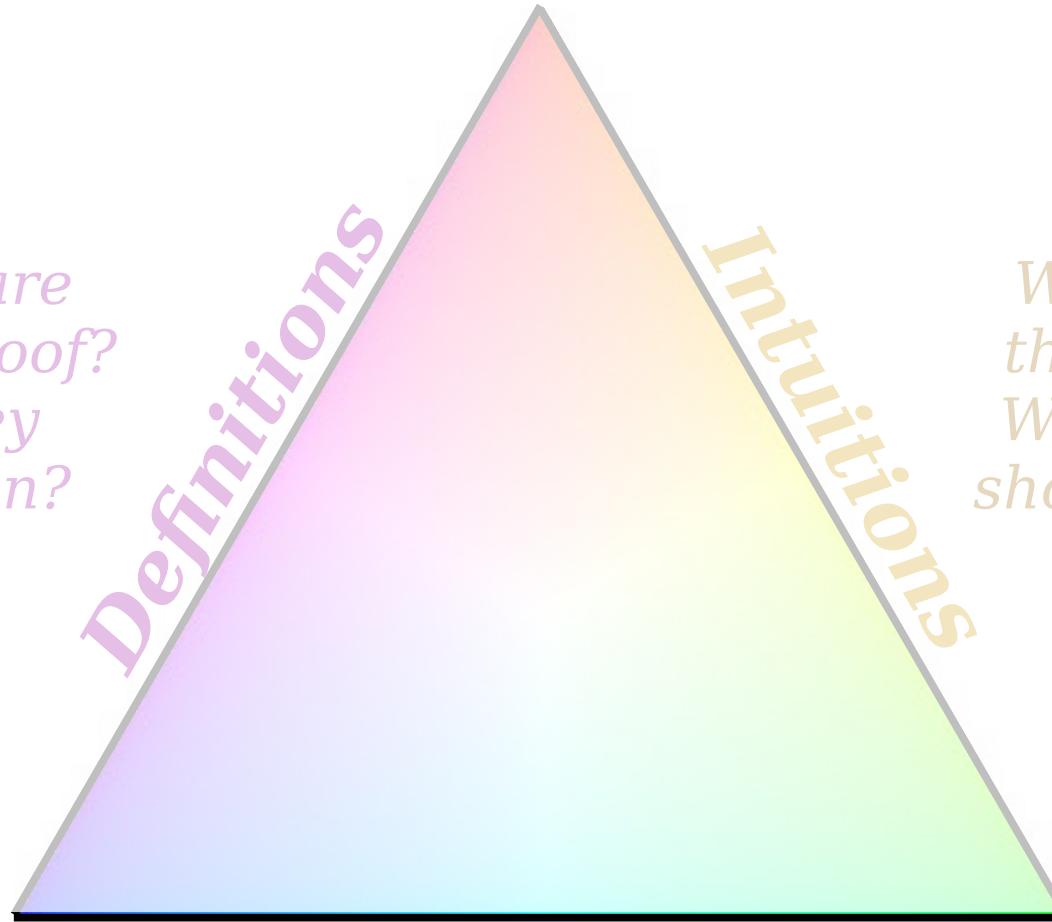
Let's Draw Some Pictures!



$$(k+1)^2 - k^2 = 2k+1$$

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

*What terms are used in this proof?
What do they formally mean?*



*What does this theorem mean?
Why, intuitively, should it be true?*

*What is the standard format for writing a proof?
What are the techniques for doing so?*

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Proof: Let n be an arbitrary odd integer. We will show that there exist integers r and s where $r^2 - s^2 = n$.

Since n is odd, we know there is an integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

$$\begin{aligned}r^2 - s^2 &= (k+1)^2 - k^2 \\&= k^2 + 2k + 1 - k^2 \\&= 2k + 1 \\&= n.\end{aligned}$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Proof: Let n be an arbitrary odd integer. We will show that there exist integers r and s where $r^2 - s^2 = n$.

Since n is odd, we can write $n = 2k + 1$ for some integer k . We will show that there exist integers r and s where $r^2 - s^2 = 2k + 1$.

We ask the reader to make an *arbitrary choice*. Rather than specifying what n is, we're signaling to the reader that they could, in principle, supply any choice n that they'd like.

$$= 2k + 1$$

$$= n.$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Proof: Let n be an arbitrary odd integer. We will show that there exist integers r and s where $r^2 - s^2 = n$.

Since n is odd, we know that $n = 2k + 1$. Now, let $r = k + 1$. We need to show that

$$\begin{aligned} r^2 - s^2 &= (k+1)^2 - k^2 \\ &= k^2 + 2k + 1 - k^2 \\ &= 2k + 1 \\ &= n. \end{aligned}$$

As always, it's helpful to write out what we need to demonstrate with the rest of the proof.

This means that $r^2 - s^2 = n$, which is what we needed to show. ■

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Proof: Let n be an arbitrary odd integer. We will show that there exist integers r and s where $r^2 - s^2 = n$.

Since n is odd, we know there is an integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

$$\begin{aligned} r^2 - s^2 &= (k+1)^2 \\ &= k^2 + 2k + 1 \\ &= 2k + 1 \\ &= n. \end{aligned}$$

This means that $r^2 - s^2 = n$, which is what we wanted to show. ■

We're trying to prove an existential statement. The easiest way to do that is to just give concrete choices of the objects being sought out.

Theorem: For any odd integer n , there exist integers r and s where $r^2 - s^2 = n$.

Proof: Let n be an arbitrary odd integer. We will show that there exist integers r and s where $r^2 - s^2 = n$.

Since n is odd, we know there is an integer k where $n = 2k + 1$. Now, let $r = k+1$ and $s = k$. Then we see that

$$\begin{aligned}r^2 - s^2 &= (k+1)^2 - k^2 \\&= k^2 + 2k + 1 - k^2 \\&= 2k + 1 \\&= n.\end{aligned}$$

This means that $r^2 - s^2 = n$, which is what we needed to show. ■

Time-Out for Announcements!

Working in Pairs

- Problem Set Zero is due this Friday at 2:30PM. It must be completed individually.
- After that, the remaining problem sets can be done individually or in pairs.
- We have advice about how to work effectively in pairs up on the course website - check the “Guide to Partners.”
- Want to work in a pair, but don’t know who to work with? Fill out [***this Google form***](#) and we’ll connect you with a partner on Friday.

CURIS Poster Session

- CURIS is the CS department's undergraduate research program. It's a great way to get involved in research!
- There's a CURIS poster session showcasing work from the summer going on from 3PM - 5PM Friday in the Engineering Quad. Feel free to stop on by!
- Interested in seeing what research projects are open right now? Visit <https://curis.stanford.edu>.
- Have questions about research or how CURIS works? Email the CURIS mentors, PhD students who answer questions about research:

curis-mentors@cs.stanford.edu

Qt Creator Help Session

- The lovely CS106B staff have invited all y'all to join them for a Qt Creator Help Session this evening if you're having trouble getting Qt Creator up and running on your system.
- Runs **7:00PM - 9:00PM** in the basement of the Huang building (just around the corner from us!)
- SCPD students – please reach out to us if you need help setting things up. We'll do our best to help out.

Back to CS103!

Theorem: If n is an integer,
then $\lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor = n$.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Conventions

What is the standard format for writing a proof?

What are the techniques for doing so?

Floors and Ceilings

- The notation $\lceil x \rceil$ represents the **ceiling** of x , the smallest integer greater than or equal to x .

$$\lceil 1 \rceil = 1$$

$$\lceil 1.5 \rceil = 2$$

$$\lceil -1 \rceil = -1$$

$$\lceil -1.5 \rceil = -1$$

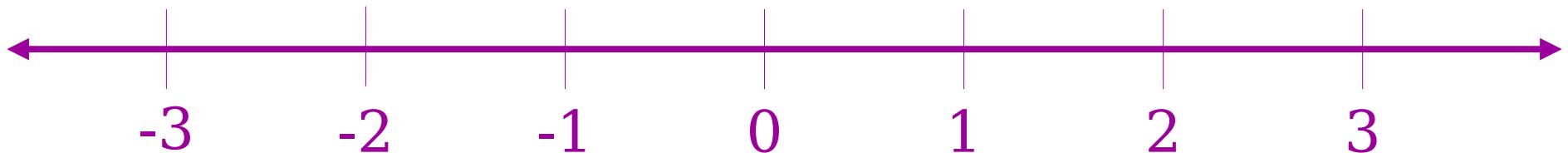
- The notation $\lfloor x \rfloor$ represents the **floor** of x , the largest integer less than or equal to x .

$$\lfloor 1 \rfloor = 1$$

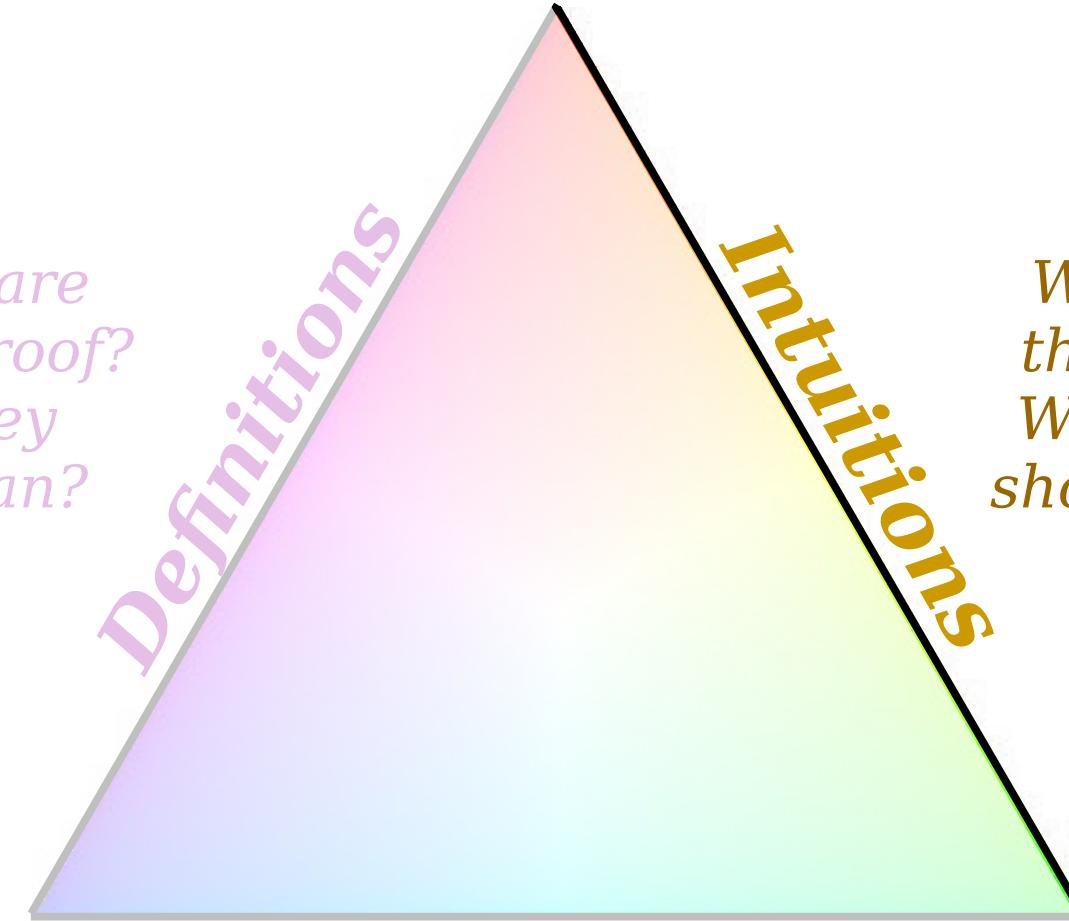
$$\lfloor 1.5 \rfloor = 1$$

$$\lfloor -1 \rfloor = -1$$

$$\lfloor -1.5 \rfloor = -2$$



*What terms are used in this proof?
What do they formally mean?*



*What does this theorem mean?
Why, intuitively, should it be true?*

*What is the standard format for writing a proof?
What are the techniques for doing so?*

Let's Try Some Examples!

$$\lceil 0/2 \rceil + \lfloor 0/2 \rfloor = 0 + 0 = 0$$

$$\lceil 1/2 \rceil + \lfloor 1/2 \rfloor = 1 + 0 = 1$$

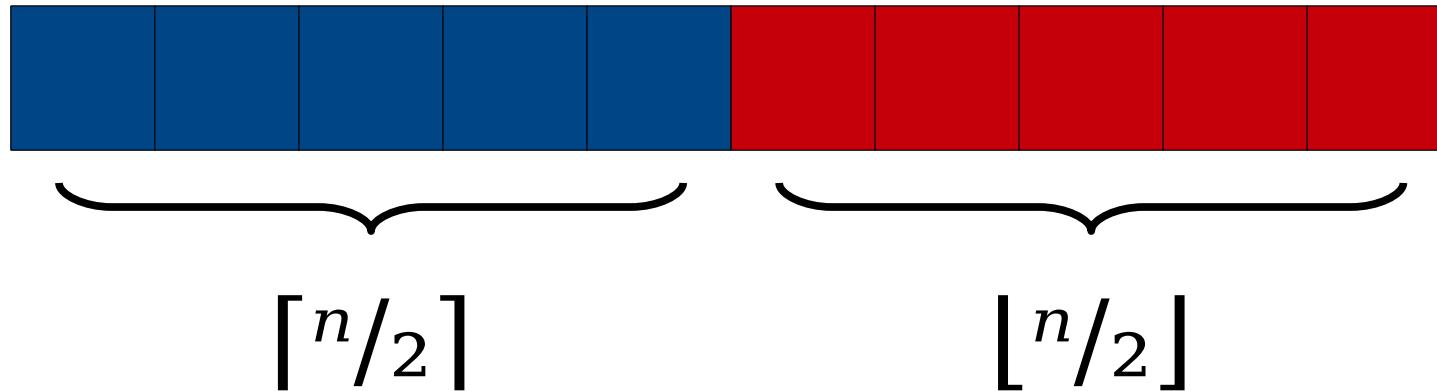
$$\lceil 2/2 \rceil + \lfloor 2/2 \rfloor = 1 + 1 = 2$$

$$\lceil 3/2 \rceil + \lfloor 3/2 \rfloor = 2 + 1 = 3$$

$$\lceil 4/2 \rceil + \lfloor 4/2 \rfloor = 2 + 2 = 4$$

Theorem: If n is an integer, then $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$.

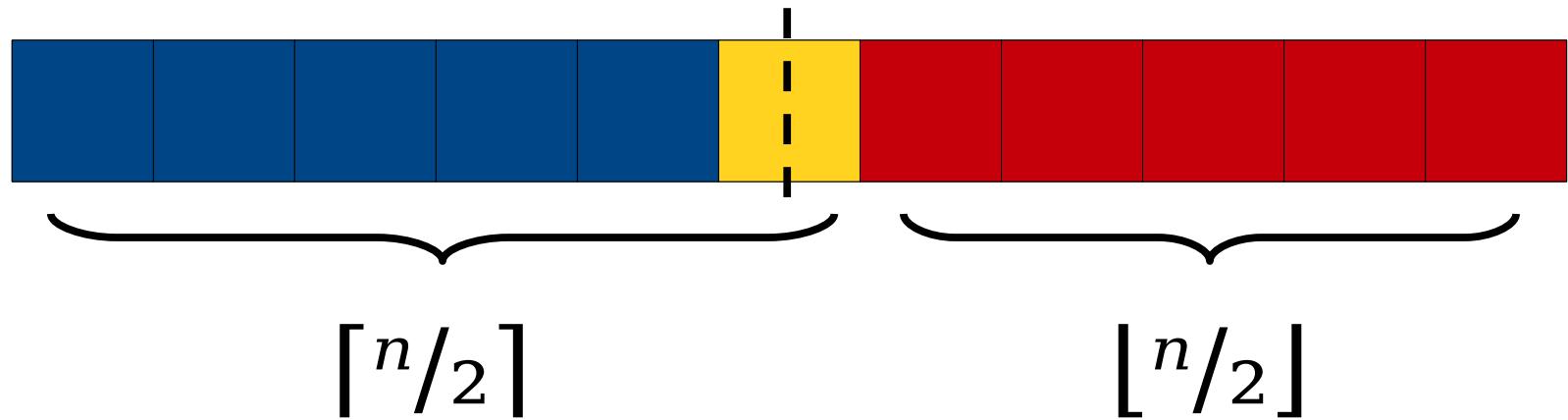
Let's Draw Some Pictures!



$$n = 2k$$

Theorem: If n is an integer, then $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$.

Let's Draw Some Pictures!



$$n = 2k + 1$$

Theorem: If n is an integer, then $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$.

What terms are used in this proof?

What do they formally mean?

Definitions

*What does this theorem mean?
Why, intuitively, should it be true?*

Intuitions

Conventions

What is the standard format for writing a proof?

What are the techniques for doing so?

Theorem: If n is an integer, then $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$.

Proof: Let n be an integer. We will show that $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$. To do so, we consider two cases:

Case 1: n is even.

This is called a *proof by cases* (or *proof by exhaustion*). We split apart into one or more cases and confirm that the result is indeed true in each of them.

Case 2: n is odd.

(Think of it like an if/else or switch statement.)

Theorem: If n is an integer, then $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$.

Proof: Let n be an integer. We will show that $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$. To do so, we consider two cases:

Case 1: n is even. This means there is an integer k such that $n = 2k$. Some algebra then tells us that

$$\begin{aligned}\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil &= \left\lfloor \frac{2k}{2} \right\rfloor + \left\lceil \frac{2k}{2} \right\rceil \\ &= [k] + [k] \\ &= 2k \\ &= n.\end{aligned}$$

Case 2: n is odd. Then there's an integer k where $n = 2k + 1$, and

$$\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{2k+1}{2} \right\rfloor + \left\lceil \frac{2k+1}{2} \right\rceil$$

At the end of a split into cases, it's a nice courtesy to explain to the reader what it was that you established in each case.

$$= n.$$

In either case, we see that $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$, as required.

Theorem: If n is an integer, then $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$.

Proof: Let n be an integer. We will show that $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$. To do so, we consider two cases:

Case 1: n is even. This means there is an integer k such that $n = 2k$. Some algebra then tells us that

$$\begin{aligned}\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil &= \left\lfloor \frac{2k}{2} \right\rfloor + \left\lceil \frac{2k}{2} \right\rceil \\ &= [k] + [k] \\ &= 2k \\ &= n.\end{aligned}$$

Case 2: n is odd. Then there's an integer k where $n = 2k + 1$, and

$$\begin{aligned}\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil &= \left\lfloor \frac{2k+1}{2} \right\rfloor + \left\lceil \frac{2k+1}{2} \right\rceil \\ &= \left\lfloor k + \frac{1}{2} \right\rfloor + \left\lceil k + \frac{1}{2} \right\rceil \\ &= (k+1) + k \\ &= 2k+1 \\ &= n.\end{aligned}$$

In either case, we see that $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$, as required. ■

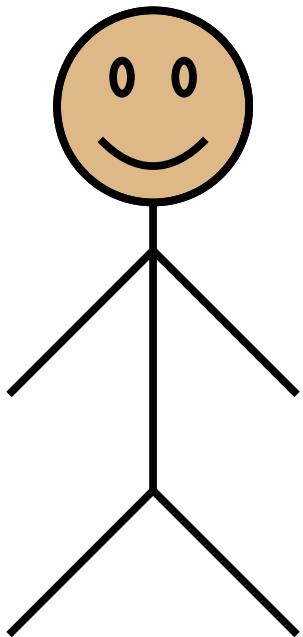
Proofs as a Dialog

Proofs as a Dialog

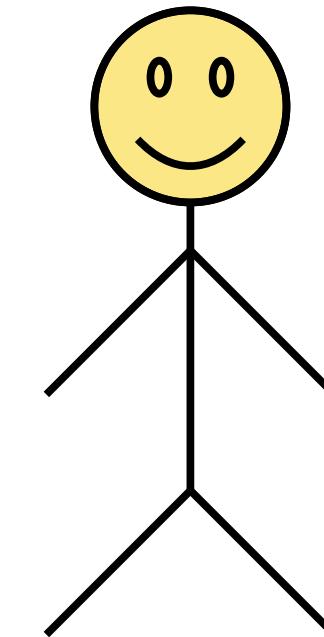
Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.



Proof Writer (You)



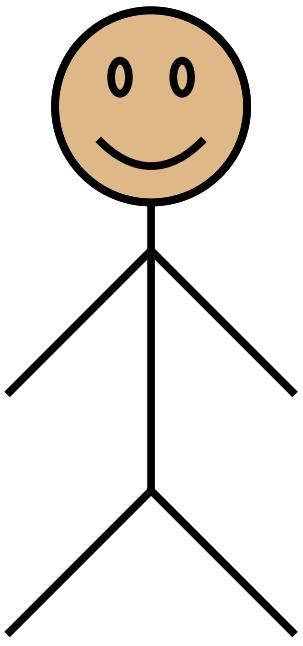
Proof Reader

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

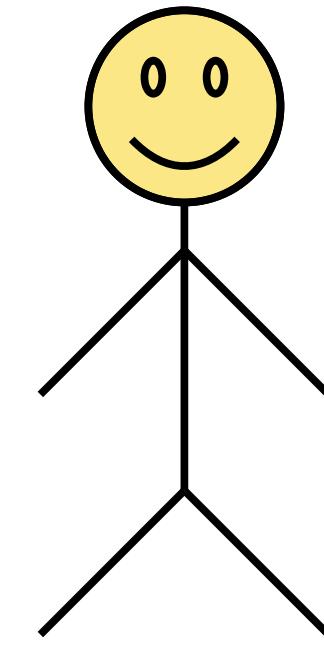
Now, let $z = k - 34$.



Proof Writer (You)

$n = 137$

Reader Picks



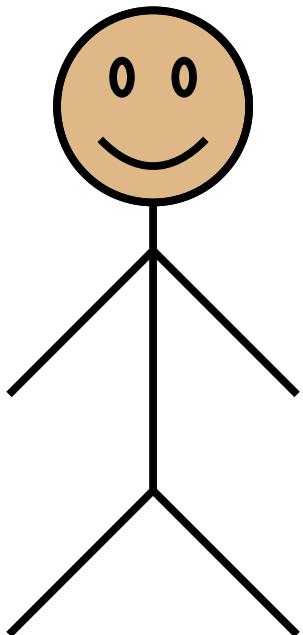
Proof Reader

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.



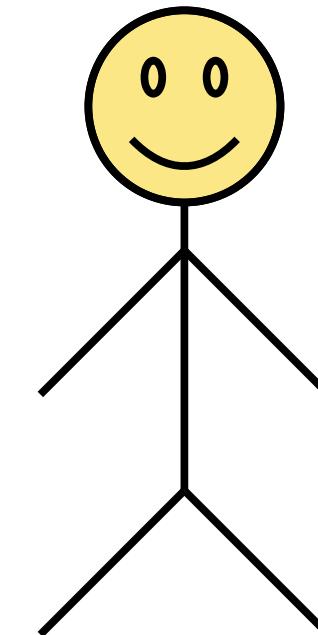
Proof Writer (You)

$k = 68$

Neither Picks

$n = 137$

Reader Picks



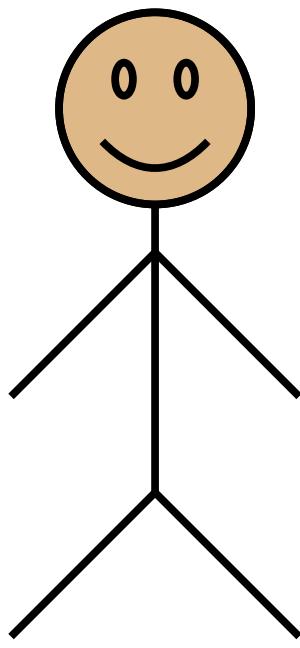
Proof Reader

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.



$z = 34$

Writer Picks

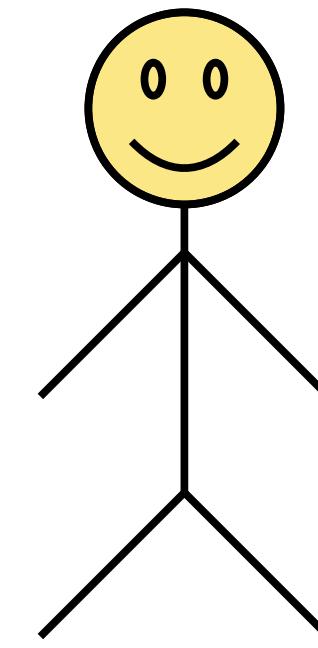
Proof Writer (You)

$k = 68$

Neither Picks

$n = 137$

Reader Picks



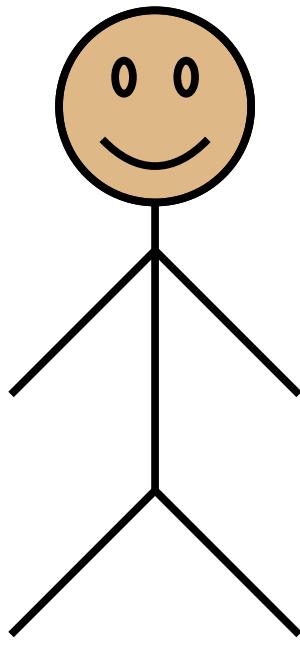
Proof Reader

Proofs as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer k such that $n = 2k + 1$.

Now, let $z = k - 34$.



$z = 34$

Writer Picks

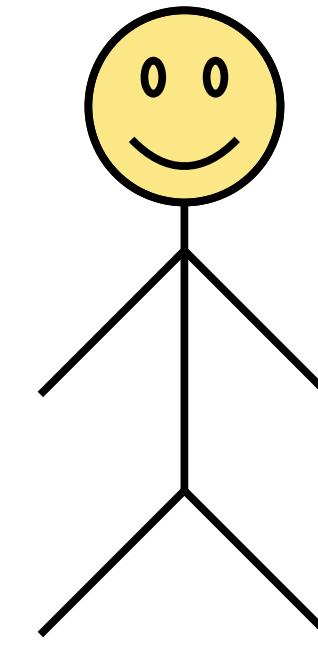
Proof Writer (You)

$k = 68$

Neither Picks

$n = 137$

Reader Picks

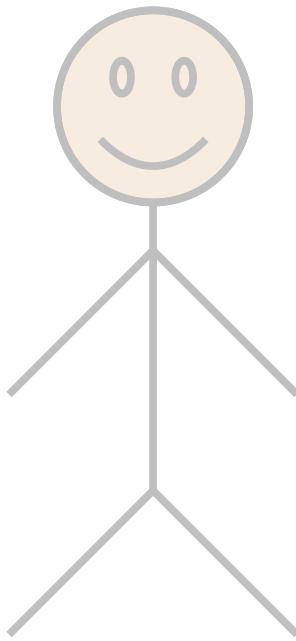


Proof Reader

Each of these variables has a distinct, assigned value.

Each variable was either picked by the reader, picked by the writer, or has a value that can be determined from other variables.

Now, let $z = k - 34$.



$z = 34$

Writer Picks

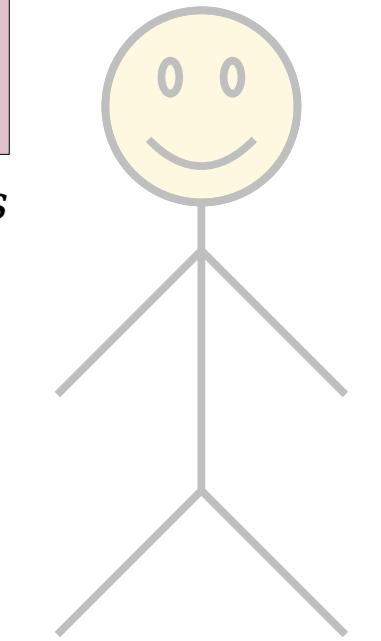
Proof Writer (You)

$k = 68$

Neither Picks

$n = 137$

Reader Picks



Proof Reader

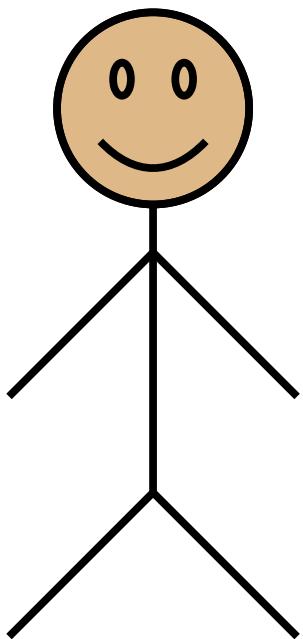
Who Owns What?

- The **reader** chooses and owns a value if you use wording like this:
 - Pick a natural number n .
 - Consider some $n \in \mathbb{N}$.
 - Fix a natural number n .
 - Let n be a natural number.
- The **writer** (you) chooses and owns a value if you use wording like this:
 - Let $r = n + 1$.
 - Pick $s = n$.
- **Neither** of you chooses a value if you use wording like this:
 - Since n is even, we know there is some $k \in \mathbb{Z}$ where $n = 2k$.
 - Because n is odd, there must be some integer k where $n = 2k + 1$.

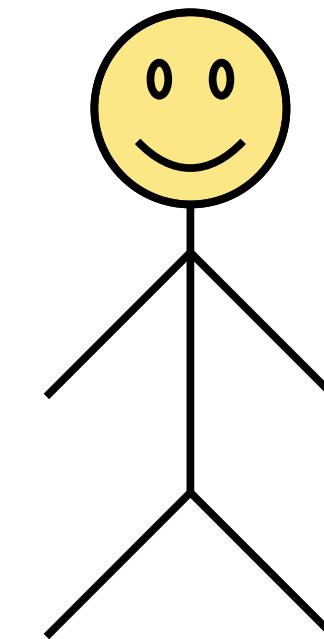
Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x , we know that $x+1$ is odd.



Proof Writer (You)

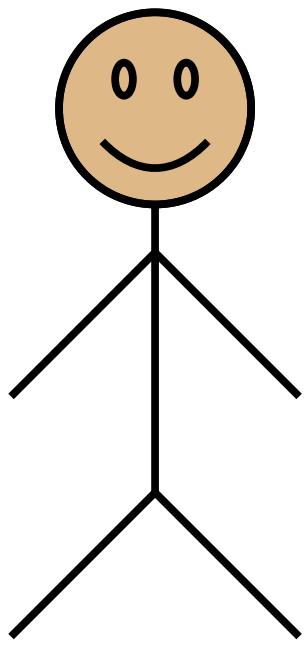


Proof Reader

Proofs as a Dialog

Let x be an arbitrary even integer.

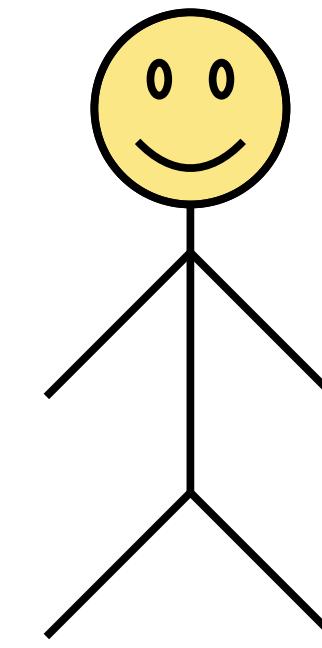
Then for any even x , we know that $x+1$ is odd.



Proof Writer (You)

$x = 242$

Reader Picks

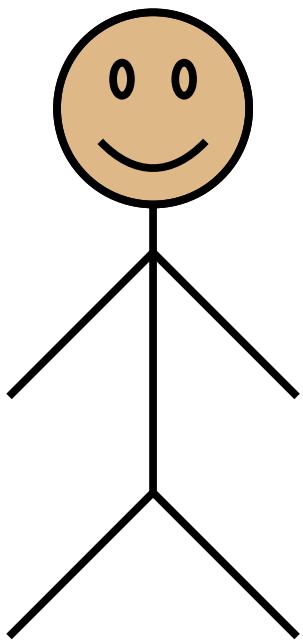


Proof Reader

Proofs as a Dialog

Let x be an arbitrary even integer.

Then **for any even x** , we know that $x+1$ is odd.

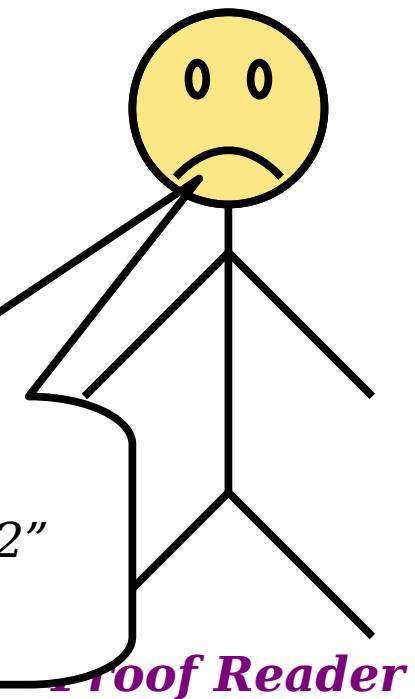


Proof Writer (You)

$x = 242$

Reader Picks

*What does
"for any even 242"
mean?*

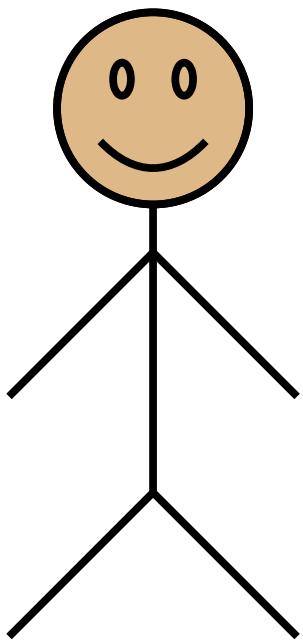


Proof Reader

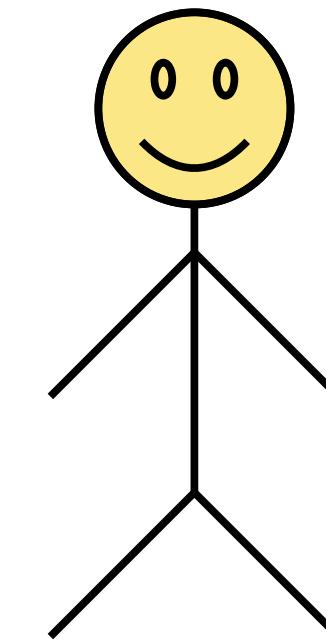
Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that $x+1$ is odd.



Proof Writer (You)

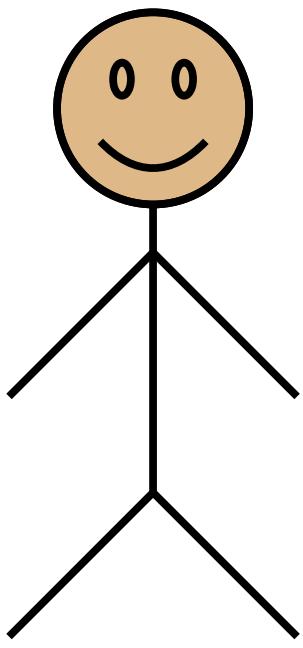


Proof Reader

Proofs as a Dialog

Let x be an arbitrary even integer.

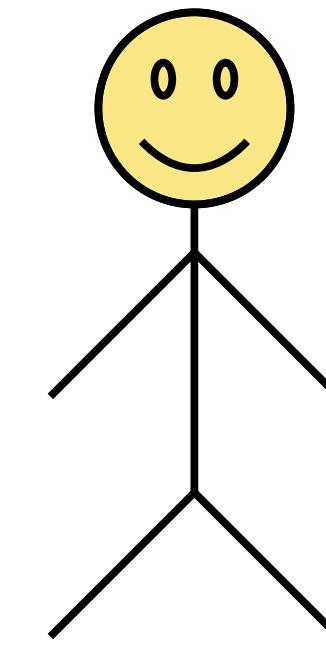
Since x is even, we know that $x+1$ is odd.



Proof Writer (You)

$x = 242$

Reader Picks

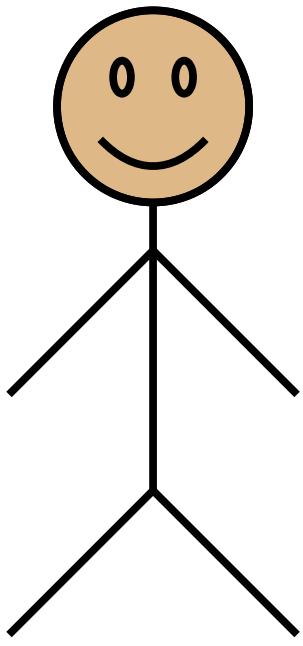


Proof Reader

Proofs as a Dialog

Let x be an arbitrary even integer.

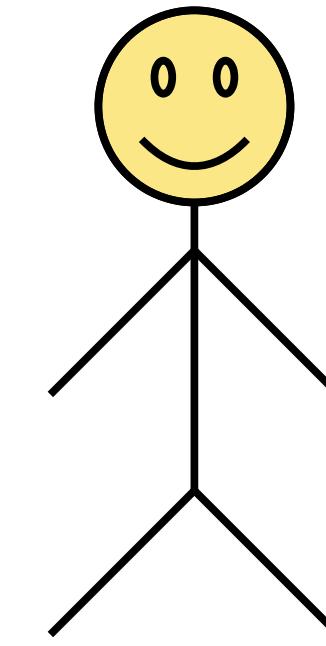
Since x is even, we know that $x+1$ is odd.



Proof Writer (You)

$x = 242$

Reader Picks



Proof Reader

Every variable needs a value.

*Avoid talking about “all x ” or “every x ”
when manipulating something
concrete.*

*To prove something is true for any
choice of a value for x , let the reader
pick x .*

Once you've said something like

Let x be an integer.

Consider an arbitrary $x \in \mathbb{Z}$.

Pick any x .

Do not say things like the following:

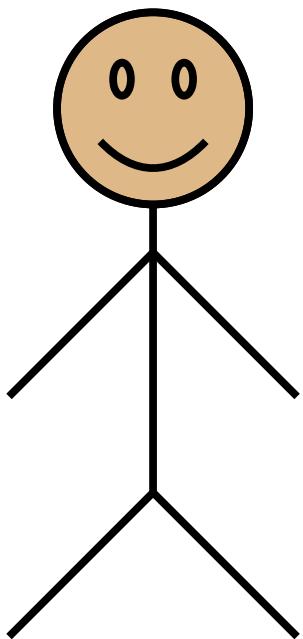
This means that **for any** $x \in \mathbb{Z}$...

So **for all** $x \in \mathbb{Z}$...

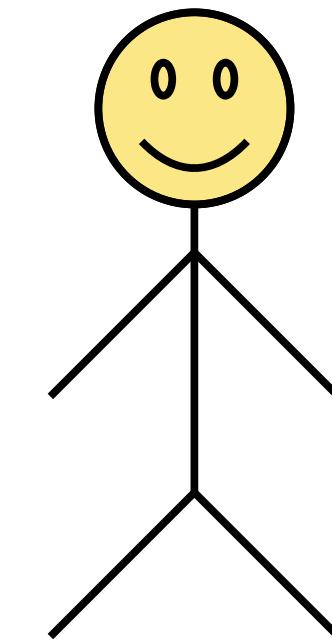
Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.



Proof Writer (You)

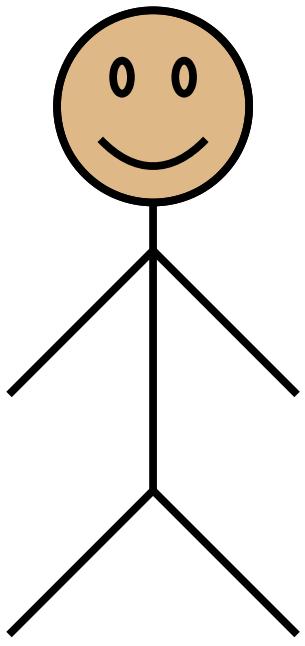


Proof Reader

Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.



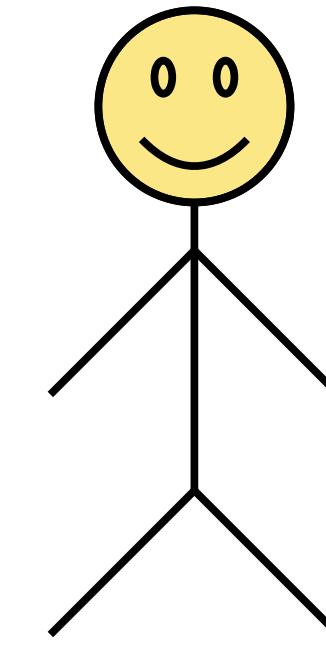
Proof Writer (You)

$m = 103$

Reader Picks

$n = 166$

Reader Picks

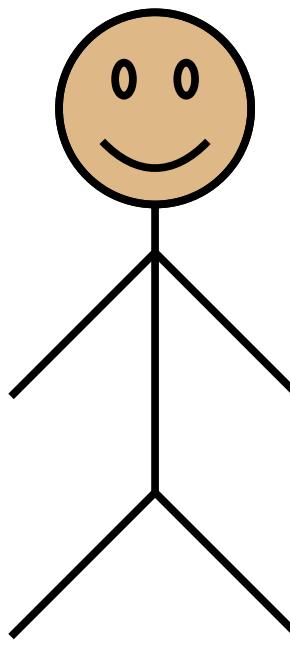


Proof Reader

Proofs as a Dialog

Pick two integers m and n where $m+n$ is odd.

Let $n = 1$, which means that $m+1$ is odd.



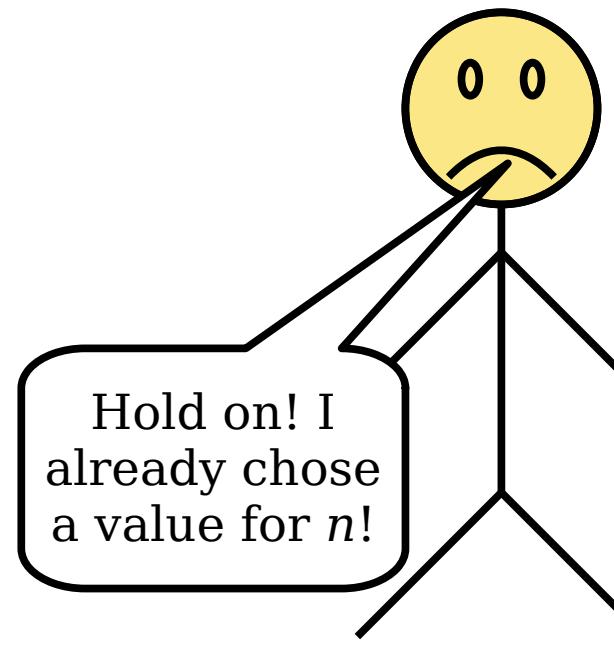
Proof Writer (You)

$m = 103$

Reader Picks

$n = 166$

Reader Picks



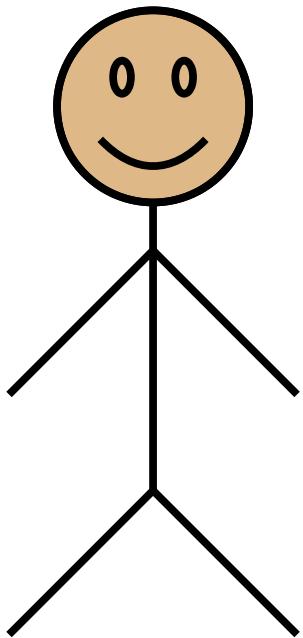
Hold on! I
already chose
a value for n !

Proof Reader

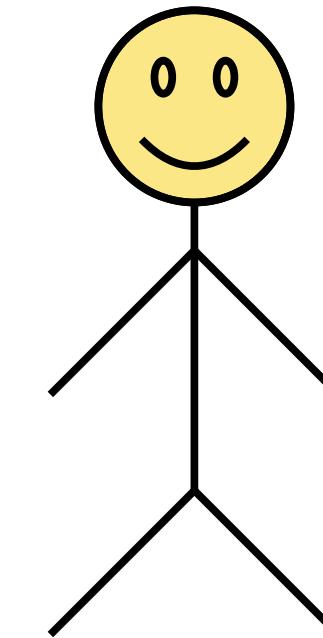
Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.



Proof Writer (You)

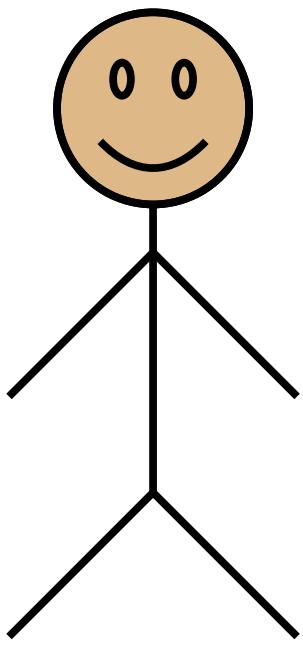


Proof Reader

Proofs as a Dialog

Let $n = 1$.

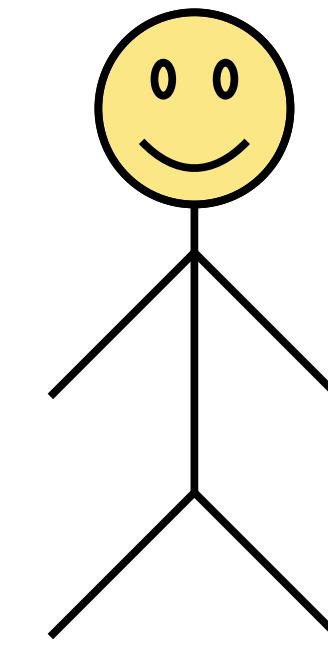
Pick any integer m where $m+1$ is odd.



Proof Writer (You)

$n = 1$

Writer Picks

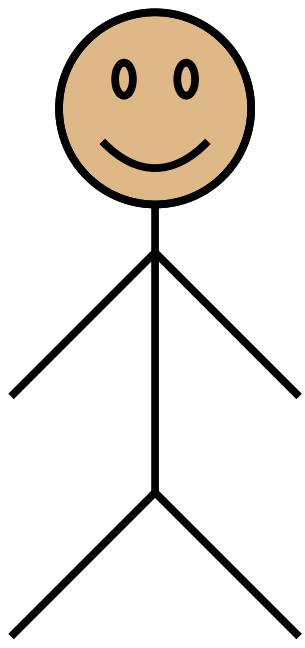


Proof Reader

Proofs as a Dialog

Let $n = 1$.

Pick any integer m where $m+1$ is odd.



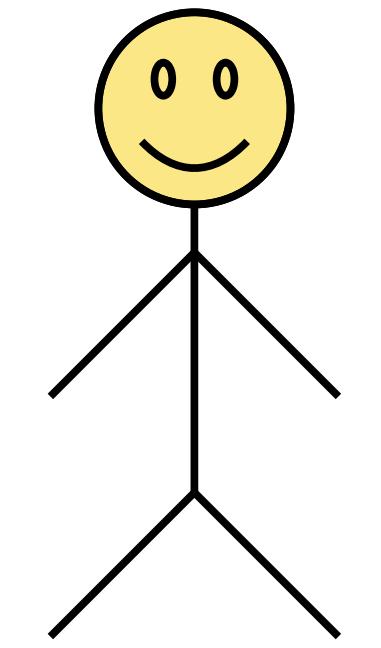
Proof Writer (You)

$m = 166$

Reader Picks

$n = 1$

Writer Picks



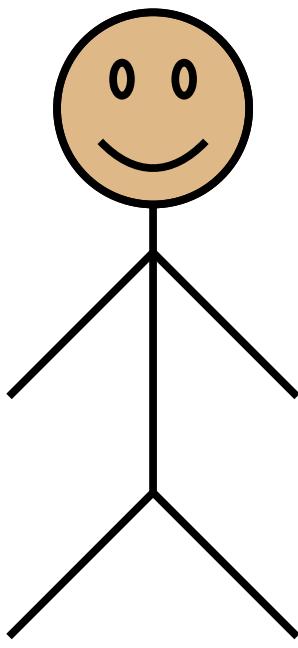
Proof Reader

Proofs as a Dialog

Let $n = 1$.

Do we even
need n here?

Pick any integer m where $m+1$ is odd.



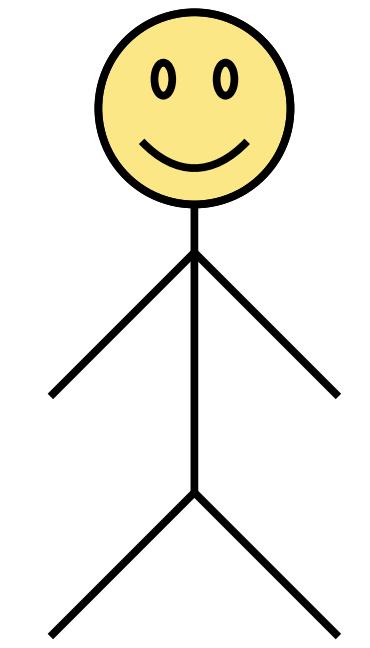
Proof Writer (You)

$m = 166$

Reader Picks

$n = 1$

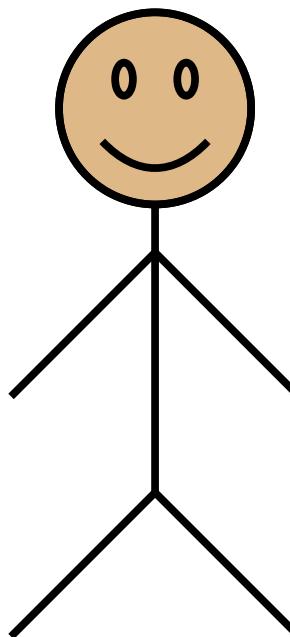
Writer Picks



Proof Reader

Proofs as a Dialog

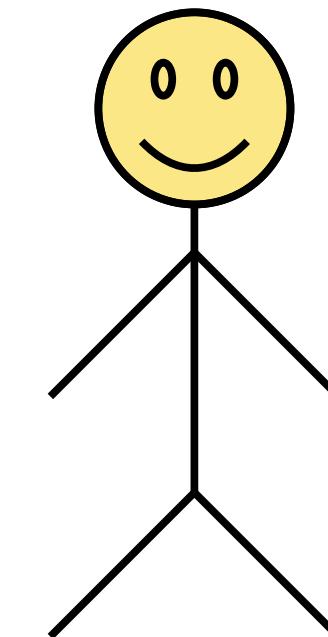
Pick any integer m where $m+1$ is odd.



Proof Writer (You)

$m = 166$

Reader Picks



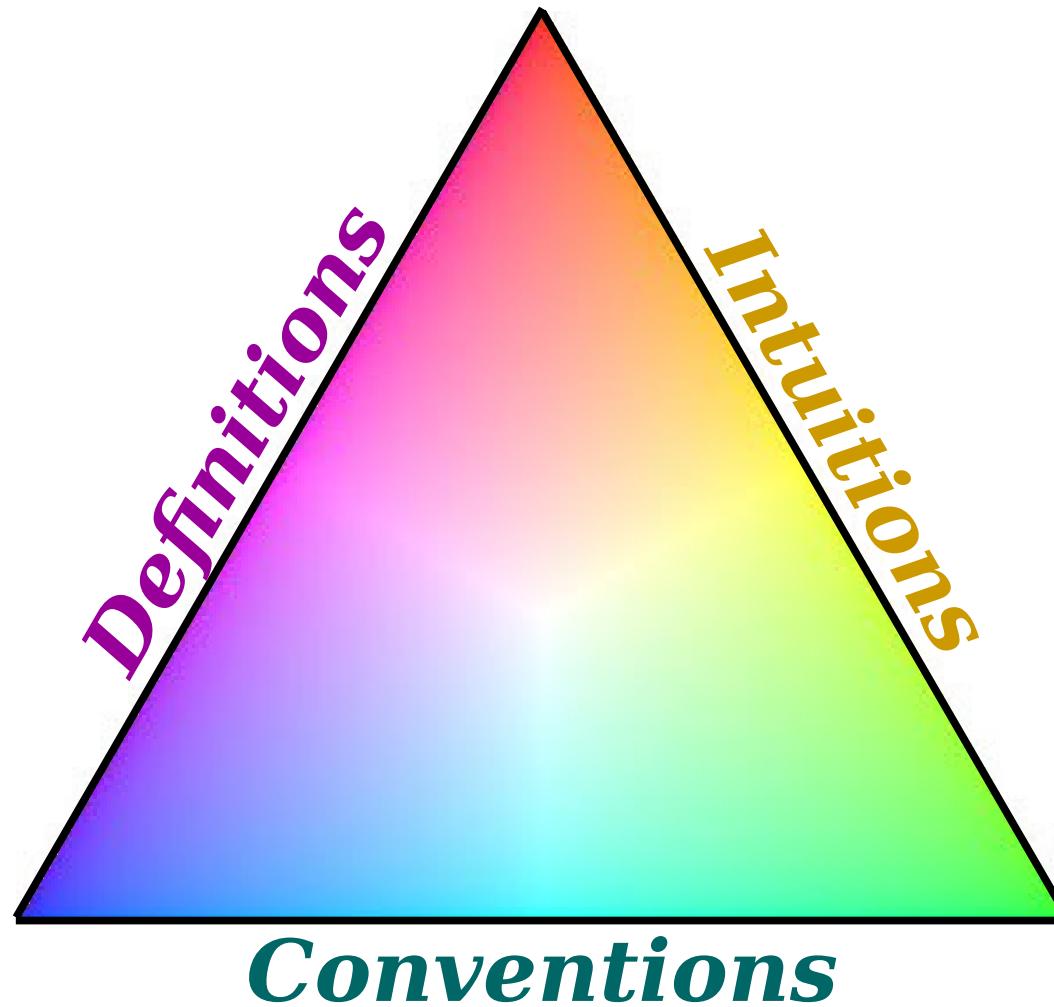
Proof Reader

Be mindful of who owns what variable.

Don't change something you don't own.

***You don't always need to name things,
especially if they already have a name.***

To Recap



Writing a good proof requires a blend of definitions, intuitions, and conventions.

An integer n is **even** if there is an integer k where $n = 2k$.

An integer n is **odd** if there is an integer k where $n = 2k+1$.

Definitions tell us what we need to do in a proof.
Many proofs directly reference these definitions.

Let's Draw Some Pictures!

Let's Do Some Math!

Let's Try Some Examples!

Building intuition for results requires creativity, trial, and error.

- Prove universal statements by making arbitrary choices.
- Prove existential statements by making concrete choices.
- Prove “If P , then Q ” by assuming P and proving Q .
- Write in complete sentences.
- Number sub-formulas when referring to them.
- Summarize what was shown in proofs by cases.
- Articulate your start and end points.

Mathematical proofs have established conventions that increase rigor and readability.

Your Action Items

- ***Read “Guide to \in and \subseteq .***
 - You'll want to have a handle on how these concepts are related, and on how they differ.
- ***Read “Guide to Proofs.”***
 - This resource covers proofwriting strategies and conventions and is an essential complement to this lecture.
- ***Read “Guide to Partners.”***
 - It's all about how to work effectively in pairs. Mull this over so you're ready to go for Problem Set 1.
- ***Finish and submit Problem Set 0.***
 - Don't put this off until the last minute!

Next Time

- ***Indirect Proofs***
 - How do you prove something without actually proving it?
- ***Mathematical Implications***
 - What exactly does “if P , then Q ” mean?
- ***Proof by Contrapositive***
 - A helpful technique for proving implications.
- ***Proof by Contradiction***
 - Proving something is true by showing it can't be false.