Propositional Logic



Question: How do we formalize the
definitions and reasoning we use in our
proois?



Where We're Going

 Propositional Logic (Today)
» Reasoning about Boolean values.
» First-Order Logic (Wednesday/Friday)

 Reasoning about properties of multiple
objects.



Propositional Logic



A proposition is a statement that is,
by itself, either true or false.



Some Sample Propositions

* | am not throwing away my shot.

* I'm just like my country.

* I'm young, scrappy, and hungry.

* I'm not throwing away my shot.

* I'm ‘a get a scholarship to King’s College.

* [ prob’ly shouldn’t brag, but dag, I amaze
and astonish.

* The problem is I got a lot of brains but no
polish.



Things That Aren't Propositions
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Propositional Logic

 Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

* Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.

 Each variable represents some proposition, such as
“You liked it” or “You should have put a ring on it.”

 Connectives encode how propositions are related,
such as “If you liked it, then you should have put a
ring on it.”



Propositional Variables

 Each proposition will be represented by a
propositional variable.

* Propositional variables are usually
represented as lower-case letters, such
as p, g, 1, S, etc.

« Each variable can take one one of two
values: true or false.



Propositional Connectives

 There are seven propositional connectives,
many of which will be familiar from
programming.

» First, there’s the logical “NOT” operation:
i
* You'd read this out loud as “not p.”

 The fancy name for this operation is logical
negation.



Propositional Connectives

 There are seven propositional connectives,
many of which will be familiar from
programming.

* Next, there’s the logical “AND” operation:

P Aq
* You'd read this out loud as “p and q.”

 The fancy name for this operation is logical
conjunction.



Propositional Connectives

 There are seven propositional connectives,
many of which will be familiar from
programming.

 Then, there’s the logical “OR” operation:

PpVq
* You'd read this out loud as “p or q.”

 The fancy name for this operation is logical
disjunction. This is an inclusive or.



Truth Tables

A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

* Let’s go look at the truth tables for the
three connectives we’ve seen so far:

— A Vv



Summary of Important Points

 The v connective is an inclusive “or.” It's true
if at least one of the operands is true.

 Similar to the || operator in C, C++, Java, etc. and
the or operator in Python.

» If we need an exclusive “or” operator, we can
build it out of what we already have.

* Try this yourselt! Take a minute to combine
these operators together to form an
expression that represents the exclusive or of
p and g (something that’s true if and only if
exactly one of p and g are true.)



Mathematical Implication



Implication

 We can represent implications using this
connective:

P~—dq
* You'd read this out loud as “p implies q.”

 The fancy name for this is the material conditional.

* Question: What should the truth table for p - ¢
look like?

« Pull out a sheet of paper, make a guess, and talk
things over with your neighbors!
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An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.




Important observation:
The statement p — ¢ is true
whenever p A —q is false.
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An implication with a An implication with a
false antecedent is true consequent is called
called vacuously true.

trivially true.




Please commit this table
to memory. We're going to
need it, extensively, over
the next couple of weeks.




Fun Fact: The Contrapositive Revisited



The Biconditional Connective



The Biconditional Connective

* On Friday, we saw that “p if and only if ¢” means
both that p - g and g - p.

 We can write this in propositional logic using the
biconditional connective:

P <q
 This connective’s truth table has the same
meaning as “p implies g and g implies p.”

 Based on that, what should its truth table look
like?

« Take a guess, and talk it over with your neighbor!



Biconditionals

 The biconditional connective p < q is
read “p if and only if g.”

e Here's its truth table:

P 4 P<(q
FF T
FT F
T F F
T T T




Biconditionals

 The biconditional connective p < g 1s
read “p if and only if g.”

e Here's its truth table:

D

One interpretation ot ©

—
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F
T

propositions must have
equal Truth values,
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True and False

e There are two more “connectives” to
speak of: true and false.

 The symbol T is a value that is always true.

 The symbol L is value that is always false.

e These are often called connectives,
though they don't connect anything.

* (Or rather, they connect zero things.)



Proot by Contradiction

* Suppose you want to prove p is true using a
proof by contradiction.

* The setup looks like this:

« Assume p is false.
* Derive something that we know is false.
* Conclude that p is true.

* In propositional logic:
(-p~>L1)-p



Operator Precedence

« How do we parse this statement?
X > yYVZoXVYAZ
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.
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Operator Precedence

« How do we parse this statement?
(7x) > yvz-oXxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.
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Operator Precedence

« How do we parse this statement?
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* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.



Operator Precedence

« How do we parse this statement?
(7x) > (yVvz)—>(KxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.



Operator Precedence

« How do we parse this statement?

(=x) = ((yvz)=KxV(yA2))
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.



Operator Precedence

« How do we parse this statement?

(=x) = ((yvz)=KxV(yA2))
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.



Operator Precedence

 The main points to remember:

* = binds to whatever immediately follows it.
* A and v bind more tightly than -.

 We will commonly write expressions like
p A q — r without adding parentheses.

 For more complex expressions, we'll try to
add parentheses.

e Confused? Please ask!



The Big Table

Connective |Read Aloud As| C++ Version @ Fancy Name
- “not” ! Negation
A “and” && Conjunction
'} “or” || Disjunction
- “implies” see PS2! Implication
© “if and only if” see PS2! Biconditional
T “true” true Truth
L “false” false Falsity




Time-Out for Announcements!



High-Res Course Feedback

* This quarter, we're working with the High-Res
Course Feedback (HRCF) team in the CS
department to get your input about how we’re
doing throughout the quarter.

* You'll get two emails over the quarter from

hrcf@cs.stanford.edu asking you to leave
tfeedback.

 If you feel comfortable doing so, please let us
know how we’re doing! We’d love to know how
to improve as we transition back to in-person
instruction.


mailto:hrcf@cs.stanford.edu

A Note on Bicycling

 Aren’t bikes wonderful? They're a great
way to get around campus.

e However:
= Please wear a helmet! =

 Face masks prevent needless suffering
due to COVID. Helmets prevent needless
suffering due to bike accidents.



Your Questions



“Tips for the computer forum
career fair next week?”

“How should I brush up / refresh my technical skills

for interviews in the next few weeks? I took CS 106B

with you last winter however it's been a while and I
don't remember everything super clear.”

It you havent heard of the Computer Forum, it's a parinership
between CS, EE, and industry, They put on some large career fairs
each uyear, one of which is (unfortunately) early in Fall quarfer.

It you havent read *Cracking the Coding Interview,” I'd recommend
doing so. It's got a mix ot great practice problems and general
advice, Work some ot those problems; theu've good practice:

Get on the vecruiting list (recruiting@lists.stanford.edu) and look for
fech falks, interview prep, resume crifigues, and the like,

And ask me To elaborate more about this as we get closer To The day:


mailto:recruiting@lists.stanford.edu

“What can I do with a CS degree if I don't
want to work for a corporation?”

Quite a lot, actuallyr Here’s a sampler of what some of my tormer
students are up to:

o Clerking for a federal judge while working as a civil rights atforney.

e Running a co—op tech collective that builds sotfware tor
underresourced communifies,

- Working tor the US Government building out software for
HealthCare.gov and other big projects,

e Teaching computer science al the K—¢ level,

Also look al careers in government, public policy, and the like, There is
a desperafe need for Cs falents there:




“Favorite book you read in the last 6
months? In the last 6 years?”

In the last six months — if’s probably the Tohn McPhee book
‘Oranges” aboul, well, oranges: their history, their culfivation,
where they'vre grown, why theuve grown there, efc, It’s a wide—
ranging, wonderfully escapist book,

In the last six years — that is a fough one! Here’'s a sampler of
ones that really sfood out: *Command and Confrol” by Eric
Schlosser (on nuclear weapons safety and instifutional failure),
*Cadillac Desert” by Marc Reisner (about water policy in the
western US), ‘Radetzky March” by Joseph Roth (about the twilight
of the Austro—Hungarian empire), *Cafch—22* by Joseph Heller (I
revread This one many years atter reading it in high school, and
it’s brilliant), and ‘Exhalations” by Ted Chiang (amazingly clever
speculafive fiction short stories).




Back to CS103!



Recap So Far

* A propositional variable is a variable that is
either true or false.

 The propositional connectives are
 Negation: —p
 Conjunction: p A g
* Disjunction: p vV g
 Implication: p = ¢
* Biconditional: p < g
e True: T
« False: L



Translating into Propositional Logic



Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.
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Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

‘T won't see a fotfal solar
eclipse it I'm not in the
path of fotality.”

—|a—)—|b



llp if qll
translates to
q-Pp

It does not translate to

P—dq



Some Sample Propositions

a: I will be in the path of totality.
b: I will see a total solar eclipse.
c: There is a total solar eclipse today.



Some Sample Propositions
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‘It T will be in the path of
totality, but there's no solar
eclipse foday, 1 won't see a
total solar eclipse,”




Some Sample Propositions

a: I will be in the path of totality.
b: I will see a total solar eclipse.
c: There is a total solar eclipse today.

‘It T will be in the path of
totality, but there's no solar
eclipse foday, 1 won't see a
total solar eclipse,”

anh —c—- —b



llp’ but qll

translates to

P Aq



The Takeaway Point

 When translating into or out of
propositional logic, be very caretul not to
get tripped up by nuances of the English
language.

 In fact, this is one of the reasons we have a
symbolic notation in the first place!

 Many prepositional phrases lead to
counterintuitive translations; make sure
to double-check yourself!



Propositional Equivalences



Quick Question:

What would I have to show you to convince
you that the statement p A q is false?



Quick Question:

What would I have to show you to convince
you that the statement p v q is false?



de Morgan's Laws

« Using truth tables, we concluded that

—(p A q)
i1s equivalent to
—p Vv 7q
 We also saw that
—(p Vv q)
i1s equivalent to
P ATq

 These two equivalences are called De Morgan's
Laws.



de Morgan's Laws in Code

 Pro tip: Don't write this:

if (1(p() && q())) {
[* .. *]
}
 Write this instead:

if (tp(O) ] 19()) {
[* .. */
¥

* (This even short-circuits correctly!)



An Important Equivalence

« Earlier, we talked about the truth table
for p —- g. We chose it so that

p - q isequivalentto —(p A —q)

* Later on, this equivalence will be
incredibly useful:

=(p - q) isequivalentto P A —q



Another Important Equivalence

 Here's a useful equivalence. Start with
P = q isequivalentto —(pP A —q)
By de Morgan's laws:
P = q isequivalentto —(pP A —q)
is equivalent to — P V ——q
is equivalentto — P V q

 Thus p = g is equivalent to =p v ¢q



Another Important Equivalence

« Thus p = q is equivalent

1t p is false, then
-p v qis frue, If p is
True, then g has To be

frue tor the whole
expression to be True,

to " p Vv g



Why All This Matters
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 Suppose we want to prove the following
statement:

“If x+y=16,thenx=8ory = 8"
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Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=16,thenx=8ory = 8"
X<8ANy<8-x+y=10

“If x<8and y< 8§, thenx + y = 16"



Theorem: If x + y =16, then x = 8 or y = 8.

Proof: We will prove the contrapositive of this statement:
if x<8and y< 8, thenx +y # 16.

Let x and y be arbitrary numbers such that x < 8 and
y < 8. We need to show that x + y # 16. Note that

X+y<8+y
<8+ 8
= ]0.

This means that x + y < 16, so x + y # 16, which is
what we needed to show. H



Why This Matters

* Propositional logic is a tool for reasoning
about how various statements affect one
another.

* To better understand how to prove a result,
it often helps to translate what you're
trying to prove into propositional logic first.

* That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.



Next Time

» First-Order Logic
 Reasoning about groups of objects.
 First-Order Translations

« Expressing yourself in symbolic math!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

