

Propositional Logic

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going

● Propositional Logic (Today)
● Reasoning about Boolean values.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is,
by itself, either true or false.

Some Sample Propositions

● I am not throwing away my shot.
● I’m just like my country.
● I’m young, scrappy, and hungry.
● I’m not throwing away my shot.
● I’m ‘a get a scholarship to King’s College.
● I prob’ly shouldn’t brag, but dag, I amaze

and astonish.
● The problem is I got a lot of brains but no

polish.

Things That Aren't Propositions

Commands
cannot be true

or false.

Things That Aren't Propositions

Questions
cannot be true

or false.

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical

negation.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical

conjunction.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical

disjunction. This is an inclusive or.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Let’s go look at the truth tables for the
three connectives we’ve seen so far:

¬ ∧ ∨

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's true
if at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc. and

the or operator in Python.
● If we need an exclusive “or” operator, we can

build it out of what we already have.
● Try this yourself! Take a minute to combine

these operators together to form an
expression that represents the exclusive or of
p and q (something that’s true if and only if
exactly one of p and q are true.)

Mathematical Implication

Implication

● We can represent implications using this
connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material conditional.
● Question: What should the truth table for p → q

look like?
● Pull out a sheet of paper, make a guess, and talk

things over with your neighbors!

Ancient Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

$

p q p → q

Ancient Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

p q p → q

T T T$

Ancient Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

p q p → q

T T T$

TF F

Ancient Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

p q p → q

T T T$

TF F
TF T

Ancient Contract:

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays
Ea-Nasir

Gives quality
ingots. Contract

upheld?

p q p → q

T T T

TF F
TF T
FT F

$

p q p → q

T T T

TF F
TF T
FT F

p q p → q

T T T

TF F
TF T
FT F

An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.

p q p → q

T T T

TF F
TF T
FT F

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

p q p → q

T T T

TF F
TF T
FT F

An implication with a
true consequent is called

trivially true.

An implication with a
false antecedent is

called vacuously true.

p q p → q

T T T

TF F
TF T
FT F

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

● On Friday, we saw that “p if and only if q” means
both that p → q and q → p.

● We can write this in propositional logic using the
biconditional connective:

p ↔ q
● This connective’s truth table has the same

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look

like?
● Take a guess, and talk it over with your neighbor!

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

True and False

● There are two more “connectives” to
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives,
though they don't connect anything.
● (Or rather, they connect zero things.)

Proof by Contradiction

● Suppose you want to prove p is true using a
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Please ask!

The Big Table

Connective Read Aloud As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity

Time-Out for Announcements!

High-Res Course Feedback

● This quarter, we’re working with the High-Res
Course Feedback (HRCF) team in the CS
department to get your input about how we’re
doing throughout the quarter.

● You’ll get two emails over the quarter from
hrcf@cs.stanford.edu asking you to leave
feedback.

● If you feel comfortable doing so, please let us
know how we’re doing! We’d love to know how
to improve as we transition back to in-person
instruction.

mailto:hrcf@cs.stanford.edu

A Note on Bicycling

● Aren’t bikes wonderful? They’re a great
way to get around campus.

● However:

 ☞ Please wear a helmet! ☜
● Face masks prevent needless suffering

due to COVID. Helmets prevent needless
suffering due to bike accidents.

Your Questions

“Tips for the computer forum
career fair next week?”

“How should I brush up / refresh my technical skills
for interviews in the next few weeks? I took CS 106B
with you last winter however it's been a while and I

don't remember everything super clear.”

If you haven’t heard of the Computer Forum, it’s a partnership
between CS, EE, and industry. They put on some large career fairs
each year, one of which is (unfortunately) early in Fall quarter.

If you haven’t read “Cracking the Coding Interview,” I’d recommend
doing so. It’s got a mix of great practice problems and general
advice. Work some of those problems; they’re good practice!

Get on the recruiting list (recruiting@lists.stanford.edu) and look for
tech talks, interview prep, resume critiques, and the like.

And ask me to elaborate more about this as we get closer to the day!

mailto:recruiting@lists.stanford.edu

“What can I do with a CS degree if I don't
want to work for a corporation?”

Quite a lot, actually! Here’s a sampler of what some of my former
students are up to:

· Clerking for a federal judge while working as a civil rights attorney.
· Running a co-op tech collective that builds software for
 underresourced communities.
· Working for the US Government building out software for
 HealthCare.gov and other big projects.
· Teaching computer science at the K-8 level.

Also look at careers in government, public policy, and the like. There is
a desperate need for CS talents there!

“Favorite book you read in the last 6
months? In the last 6 years?”

In the last six months – it’s probably the John McPhee book
“Oranges” about, well, oranges: their history, their cultivation,

where they’re grown, why they’re grown there, etc. It’s a wide-
ranging, wonderfully escapist book.

In the last six years – that is a tough one! Here’s a sampler of
ones that really stood out: “Command and Control” by Eric

Schlosser (on nuclear weapons safety and institutional failure),
“Cadillac Desert” by Marc Reisner (about water policy in the

western US), “Radetzky March” by Joseph Roth (about the twilight
of the Austro-Hungarian empire), “Catch-22” by Joseph Heller (I
reread this one many years after reading it in high school, and
it’s brilliant), and “Exhalations” by Ted Chiang (amazingly clever

speculative fiction short stories).

Back to CS103!

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.

“p if q”

translates to

q → p

It does not translate to

 ⚠ p → q ⚠

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

a ∧ ¬c → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the first place!
● Many prepositional phrases lead to

counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

de Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

de Morgan's Laws in Code

● Pro tip: Don't write this:

 if (!(p() && q())) {

 /* … */

 }

● Write this instead:

 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly!)

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q is equivalent to ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) is equivalent to p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q is equivalent to ¬(p ∧ ¬q)
● By de Morgan's laws:

 p → q is equivalent to ¬(p ∧ ¬q)

 p → q is equivalent to ¬p ∨ ¬¬q

 p → q is equivalent to ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q is equivalent to ¬(p ∧ ¬q)
● By de Morgan's laws:

 p → q is equivalent to ¬(p ∧ ¬q)

 p → q is equivalent to ¬p ∨ ¬¬q

 p → q is equivalent to ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

Why All This Matters

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive of this statement:
if x < 8 and y < 8, then x + y ≠ 16.

Let x and y be arbitrary numbers such that x < 8 and
y < 8. We need to show that x + y ≠ 16. Note that

x + y < 8 + y
 < 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements affect one
another.

● To better understand how to prove a result,
it often helps to translate what you're
trying to prove into propositional logic first.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

