
  

Propositional Logic
 



  

Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



  

Where We're Going

● Propositional Logic (Today)
● Reasoning about Boolean values.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● I am not throwing away my shot.
● I’m just like my country.
● I’m young, scrappy, and hungry.
● I’m not throwing away my shot.
● I’m ‘a get a scholarship to King’s College.
● I prob’ly shouldn’t brag, but dag, I amaze 

and astonish.
● The problem is I got a lot of brains but no 

polish.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical 

negation.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical 

conjunction.



  

Propositional Connectives

● There are seven propositional connectives, 
many of which will be familiar from 
programming.

● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical 

disjunction. This is an inclusive or.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Let’s go look at the truth tables for the 
three connectives we’ve seen so far:

¬       ∧        ∨



  

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's true 
if at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc. and 

the or operator in Python.
● If we need an exclusive “or” operator, we can 

build it out of what we already have.
● Try this yourself! Take a minute to combine 

these operators together to form an 
expression that represents the exclusive or of 
p and q (something that’s true if and only if 
exactly one of p and q are true.)



  

Mathematical Implication



  

Implication

● We can represent implications using this 
connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material conditional.
● Question: What should the truth table for p → q 

look like?
● Pull out a sheet of paper, make a guess, and talk 

things over with your neighbors!



  

Ancient Contract:
  

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Nanni Ea-Nasir

Nanni pays 
Ea-Nasir

Gives quality 
ingots. Contract 

upheld?

$

p q p → q
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p q p → q

T T T

TF F
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An implication is false only 
when the antecedent is true 
and the consequent is false.

Every formula is either true 
or false, so these other 
entries have to be true.



  

p q p → q

T T T

TF F
TF T
FT F

Important observation: 
The statement p → q is true 
whenever p ∧ ¬q is false.



  

p q p → q

T T T

TF F
TF T
FT F

An implication with a 
true consequent is called 

trivially true.

An implication with a 
false antecedent is 

called vacuously true.



  

p q p → q

T T T

TF F
TF T
FT F

Please commit this table 
to memory. We’re going to 

need it, extensively, over 
the next couple of weeks.



  

Fun Fact: The Contrapositive Revisited



  

The Biconditional Connective



  

The Biconditional Connective

● On Friday, we saw that “p if and only if q” means 
both that p → q and q → p.

● We can write this in propositional logic using the 
biconditional connective:

p ↔ q
● This connective’s truth table has the same 

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look 

like?
● Take a guess, and talk it over with your neighbor!



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔ 
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Proof by Contradiction

● Suppose you want to prove p is true using a 
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p  



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:
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Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   
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↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Please ask!



  

The Big Table

Connective Read Aloud As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity



  

Time-Out for Announcements!



  

High-Res Course Feedback

● This quarter, we’re working with the High-Res 
Course Feedback (HRCF) team in the CS 
department to get your input about how we’re 
doing throughout the quarter.

● You’ll get two emails over the quarter from 
hrcf@cs.stanford.edu asking you to leave 
feedback.

● If you feel comfortable doing so, please let us 
know how we’re doing! We’d love to know how 
to improve as we transition back to in-person 
instruction.

mailto:hrcf@cs.stanford.edu


  

A Note on Bicycling

● Aren’t bikes wonderful? They’re a great 
way to get around campus.

● However:

 ☞ Please wear a helmet! ☜
● Face masks prevent needless suffering 

due to COVID. Helmets prevent needless 
suffering due to bike accidents.



  

Your Questions



  

“Tips for the computer forum
career fair next week?”

 

“How should I brush up / refresh my technical skills 
for interviews in the next few weeks? I took CS 106B 
with you last winter however it's been a while and I 

don't remember everything super clear.”

If you haven’t heard of the Computer Forum, it’s a partnership 
between CS, EE, and industry. They put on some large career fairs 
each year, one of which is (unfortunately) early in Fall quarter.

 

If you haven’t read “Cracking the Coding Interview,” I’d recommend 
doing so. It’s got a mix of great practice problems and general 
advice. Work some of those problems; they’re good practice!

 

Get on the recruiting list (recruiting@lists.stanford.edu) and look for 
tech talks, interview prep, resume critiques, and the like.

 

And ask me to elaborate more about this as we get closer to the day!

mailto:recruiting@lists.stanford.edu


  

“What can I do with a CS degree if I don't 
want to work for a corporation?”

Quite a lot, actually! Here’s a sampler of what some of my former 
students are up to:

· Clerking for a federal judge while working as a civil rights attorney.
· Running a co-op tech collective that builds software for  
  underresourced communities.
· Working for the US Government building out software for 
  HealthCare.gov and other big projects.
· Teaching computer science at the K-8 level.

Also look at careers in government, public policy, and the like. There is 
a desperate need for CS talents there!



  

“Favorite book you read in the last 6 
months? In the last 6 years?”

In the last six months – it’s probably the John McPhee book 
“Oranges” about, well, oranges: their history, their cultivation, 

where they’re grown, why they’re grown there, etc. It’s a wide-
ranging, wonderfully escapist book.

In the last six years – that is a tough one! Here’s a sampler of 
ones that really stood out: “Command and Control” by Eric 

Schlosser (on nuclear weapons safety and institutional failure), 
“Cadillac Desert” by Marc Reisner (about water policy in the 

western US), “Radetzky March” by Joseph Roth (about the twilight 
of the Austro-Hungarian empire), “Catch-22” by Joseph Heller (I 
reread this one many years after reading it in high school, and 
it’s brilliant), and “Exhalations” by Ted Chiang (amazingly clever 

speculative fiction short stories).



  

Back to CS103!



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

Some Sample Propositions

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

Some Sample Propositions

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

“p if q”

translates to

q → p

It does not translate to

   ⚠ p → q   ⚠



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

a ∧ ¬c → ¬b



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!
● Many prepositional phrases lead to 

counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

de Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

de Morgan's Laws in Code

● Pro tip: Don't write this:

            if (!(p() && q())) {

                /* … */

            }

● Write this instead:

            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly!)



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    is equivalent to    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    is equivalent to    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q   is equivalent to   ¬(p ∧ ¬q)
● By de Morgan's laws:

   p → q   is equivalent to   ¬(p ∧ ¬q)

    p → q  is equivalent to   ¬p ∨ ¬¬q

    p → q  is equivalent to   ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q



  

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q   is equivalent to   ¬(p ∧ ¬q)
● By de Morgan's laws:

   p → q   is equivalent to   ¬(p ∧ ¬q)

    p → q  is equivalent to   ¬p ∨ ¬¬q

    p → q  is equivalent to   ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

Why All This Matters



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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Why All This Matters

● Suppose we want to prove the following 
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x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16
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Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive of this statement:
if x < 8 and y < 8, then x + y ≠ 16.

 

Let x and y be arbitrary numbers such that x < 8 and
y < 8. We need to show that x + y ≠ 16. Note that

 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're 
trying to prove into propositional logic first.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



  

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!
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