First-Order Logic

Part One

Recap from Last Time

Recap So Far

* A propositional variable is a variable that is
either true or false.

 The propositional connectives are as follows:
* Negation: —p
 Conjunction: p A g
* Disjunction: p v g
* Implication: p — ¢
* Biconditional: p < ¢
e True: T
» False: L

Take out a sheet of paper!

What's the truth table for the — connective?

What's the negation of p — g?

New Stuff!

First-Order Logic

What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

 predicates that describe properties of
objects,

* functions that map objects to one another,
and

 quantifiers that allow us to reason about
multiple objects.

Some Examples

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

You, Eggs You, Tomato You, Shakshuka
You, History You, History

MyHeart, Havana Him, Me, EastAtlanta

You, Eggs You, Tomato You, Shakshuka
You, History You, History

MyHeart, Havana Him, Me, EastAtlanta

These blue ferms are called
constant symbols, ULnlike
proposifional variables, they
reter To objects, not
propositions,

Likes(You, Eggs) n Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) n TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) n Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) n TookBackTo(Him, Me, EastAtlanta)

The rved things thal look
like function calls are called
predicates, Predicates fake
objects as arguments and
evaluate fo frue or false,

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives, Because each predicate
evaluates to true or talse, we can

connect the fruth values of predicates
using normal propositional connectives,

Reasoning about Objects

« To reason about objects, first-order logic uses
predicates.

 Examples:

Cute(Quokka)
Arguelncessantly(Democrats, Republicans)

* Applying a predicate to arguments produces a
proposition, which is either true or false.

» Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Sentences

 Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) — Dikdik(a) v Kitty(a) v Puppy(a)
Succeeds(You) < Practices(You)

XxX<8-x<137

— —

The less—than sign is Numbers are not ‘built
just another predicate, in“ to first—order
Binary predicafes are logic. They've constant
somelimes written in symbols just like *You"
infix notation this way, and *a* above.,

Equality

» First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

* Equality is a part of first-order logic, just as —
and — are.

« Examples:
TomMarvoloRiddle = LordVoldemort
MorningStar = EveningStar

* Equality can only be applied to objects; to
state that two propositions are equal, use <.

Let's see some more examples.

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) = FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) = FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions., Functions Take
objects as input and
produce objects as outpuf,

FavoriteMovieOf(You) = FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions

First-order logic allows functions that return
objects associated with other objects.

Examples:
ColorOf(Money)
MedianOf(x, y, 2)
X+y

As with predicates, functions can take in any
number of arguments, but always return a single
value.

Functions evaluate to objects, not propositions.

Objects and Predicates

« When working in first-order logic, be caretful
to keep objects (actual things) and
propositions (true or false) separate.

* You cannot apply connectives to objects:
Venus —» TheSun
* You cannot apply functions to propositions:
StarOf(IsRed(Sun) A IsGreen(Mars))
* Ever get conftused? just ask!

The Type-Checking Table

... operate on ... | ... and produce
Connectives . .
(o A, etc.) propositions a proposition
Predicates : .
(=, etc.) objects a proposition
Functions ... objects an object

One last (and major) change

Some muggle is intelligent.

Some muggle is intelligent.

dm. (Muggle(m) A Intelligent(m))

Some muggle is intelligent.

dm. (Muggle(m) A Intelligent(m))

—

3 is the existential quantifier

and says ‘tor some choice of
m, the tollowing is true,”

The Existential Quantifier

A statement of the form
dx. some-formula

1s true if there exists a choice of x where
some-formula is true when that x is
plugged into it.

 Examples:
dx. (Even(x) N Prime(x))
dx. (TallerThan(x, me) N LighterThan(x, me))
(dw. Will(w)) —» (Ix. Way(x))

The Existential Quantifier

&

dx. Smiling(x)

The Existential Quantifier

o @

dx. Smiling(x)

The Existential Quantifier

@

\ Ix. Smiling(x)

The
Exi
S
tential Qu
antifi
er

&
ne

Jx.
Smiling(x)

The Existential Quantifier

dx. Smiling(x)

The Existential Quantifier

&

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

@

Since Smiling(x)

is true for some
choice of x, this
statement
evaluates to true.

dx. Smiling(x)

The Existential Quantifier

@

Since Smiling(x)

is true for some
choice of x, this
statement
evaluates to true.

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

@ © «

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier
\ Ix. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

dx. Smiling(x)

The Existential Quantifier

© &

dx. Smiling(x)

The Existential Quantifier

dx. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

@

(Ix. Smiling(x)) = (dy. WearingHat(y))

The Existential Quantifier

@

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x)) — (dy. WearingHat(y))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x)) — Gy WAearirgHato

The Existential Quantifier

@

Is this overall
statement true or
false?

(Ax. Smiling(x)) — H-—WearingHato)

The Existential Quantifier

@

Is this overall
statement true or
false?

Fun with Edge Cases

dx. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an
empty world, since nothing
exists, period!

Some Technical Details

Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (dy. Loves(y, You))

Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (dy. Loves(y, You))

The variable x The variable y
just lives here, just lives here,

Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (dy. Loves(y, You))

Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (Ix. Loves(x, You))

Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (Ix. Loves(x, You))

The variable x A ditferent variable,
just lives here, also named x, just
lives here.

Operator Precedence (Again)

When writing out a formula in first-order logic,
quantifiers have precedence just below —.

The statement
dx. P(x) A R(x) A Q(x)
is parsed like this:
(Ix. P()) A (R() A QX))

This is syntactically invalid because the variable x is out
of scope in the back half of the formula.

To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantity:

dx. (P(x) A R(x) A Q(x))

“For any natural number n,
n is even if and only if n? is even”

“For any natural number n,
n is even if and only if n? is even”

vn. (n € N = (Even(n) < Even(n?)))

“For any natural number n,
n is even if and only if n? is even”

Vn. (n € N = (Even(n) < Even(n?)))

‘\

V is the universal quantifier

and says ‘ftor any choice of n,
the tollowing is frue,*

The Universal Quantifier

A statement of the form
Vx. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

« Examples:

Vp. (Puppy(p) — Cute(p))
Va. (EatsPlants(a) v EatsAnimals(a))

Tallest(SultanKosen) —
Vx. (SultanKosen # x — ShorterThan(x, SultanKosen))

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

&

Since Smiling(x)
is true for every
choice of x, this

statement

evaluates to true.

The Universal Quantifier

Vx. Smiling(x)

&

Since Smiling(x)
is true for every
choice of x, this

statement

evaluates to true.

The Universal Quantifier

o

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

Since Smiling(x) is
false for this choice
x, this statement
evaluates to false.

The Universal Quantifier

false for this choice
x, this statement

\/ S l E) evaluates to false.

Since Smiling(x) is

The Universal Quantifier

(Vx. Smiling(x)) = (Vy. WearingHat(y))

The Universal Quantifier

(Vy. WearingHat(y))

The Universal Quantifier

@ Is this part of the

statement true or
false?

(Vy. WearingHat(y))

The Universal Quantifier

@ Is this part of the

statement true or
false?

(Vy. WearingHat(y))

The Universal Quantifier

S =

(Vx. Smiling(x)) — (Vy. WearingHat(y))

Is this part of the
statement true or
false?

The Universal Quantifier

Is this part of the

statement true or
false?

H-Smitingbg) — (Vy. WearingHat(y))

The Universal Quantifier

@ Is this overall

statement true or
false in this
scenario?

H-Smitingbg) — (Vy. WearingHat(y))

The Universal Quantifier

@ Is this overall

statement true or
false in this
scenario?

(Vx. Smiling(x)) = (Vy. WearingHat(y))

Fun with Edge Cases

Vx. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty
worlds.

Vx. Smiling(x)

Time-Out for Announcements!

Stanford Daily Tech Team

JOIN
The Stanford Daily

TECH TEAM

o .
PPortunities for any experience level

WHAT YOU CAN DO

« build our website and mobile app
« design & implement unique site layouts
« help us leverage analytics

« manage our data and server architecture

« launch your own tech projects

Alumni haye

Please feel free to reach out to
Sam Catania at tech@stanforddaily.com with questions!

fBig Tech

gone on to
WASHINGTON POST ENGINEEE:E ;;::!'IE

NOTION and GoOGyE

« The Stanford Daily is looking for

students for their tech team.

In their own words: “At The Daily,
you’ll have the opportunity to
take on a wide gamut of projects
— building our website and
mobile app, creating special
custom formats and features for
use in our articles, helping us
leverage analytics, or managing
our data and server architecture.
You'll also have plenty of
opportunities to start your own
projects.”

Apply online at
https://bit.ly/3CEOymO by 5PM on
Friday, October 1%,

https://bit.ly/3CE0ym0

Your Questions

“What areas of math should I focus on for
the CS Al track and what is the minimum
depth I should go in math?”

It youre looking at AI, I'd recommend ftocusing on linear algebra
and probability theory,

1 can't overstate how important linear algebra is across basically all
branches of CS, Math 51 is a greal starf. Math 104 or Math 13 are
greal tollow—up classes.

For probability, CS109 is a greal launching point and is probably
enough for much ot what youll do., If you want fo learn more,
you can look at classes in Math and Sfats fo back that up.

More generally, here’s a list of the math electives for CS and
some advice about how fo pick them,

https://quip.com/J7dBAj8L6Sk2/Math-Classes-for-Computer-Science

“What's something that you wish you
did/took advantage of as a Stanford
undergrad?”

Stanford is an amazing instifution with world—class departments in
basically every field, I'm veally happy with the classes 1 took,
though in refrospect 1 should have branched ouf a bit more and
taken classes across more deparfments, It's harder to learn
creative writing, art history, polifical philosophy, efc. once you
graduate, fhough it’s definifely still possible,

1 also can't understafe just how impressive a group of people you
are and how lucky you are fo get fo live, study, and work with

each ofher, Make lasting friendships with one another and go out

ot your way To meet each other,

“Many tech companies want to hear about
projects students have worked on, but after
taking 106A and 106B, I feel like I don't have any
to show. Do you have advice for finding time to
start projects or classes that focus on projects?”

It you're early on in CS, it's completely normal fo wnot have a lot of
project experience — after all, youre just gefting starfed: Feel free
fo talk about what you've worked on tor your classes, That's perfectly
finer Just make sure to delimit what part you did and what part was in
the starter files, As you take more CS classes, youwll naturally start
building up this kind ot experience, Project—based classes in graphics,
HCI, systems, and Al are greal tor this,

Some companies specifically ask about side projects - things you've done
in your spare Time, IMHO, that’s not a greal question To ask, I know
many great engineers who basically dont code outside of work, But if
you do want to do a project, make it something you actually are
inferested in, Ofherwise i1’s really easy To burn oud.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

» First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

* Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

 Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic

« When translating from English into first-
order logic, we recommend that you

think of first-order logic as a
mathematical programming
language.

* Your goal is to learn how to combine
basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

some smiling person wears a hat.

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

-

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

-

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

-
N

“Some smiling person wears a hat.” True

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

-

“Some smiling person wears a hat.” True

3x. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

-
R

“Some smiling person wears a hat.” True

3x. (Smiling(x) AN WearingHat(x)) True

Ix. (Smiling(x) = WearingHat(x))

-

“Some smiling person wears a hat.” True

Ix. (Smiling(x) A WearingHat(x)) True

Ix. (Smiling(x) = WearingHat(x))

=0
@@ @
RNy

“Some smiling person wears a hat.” True

Ix. (Smiling(x) A WearingHat(x)) True

Ix. (Smiling(x) - WearingHat(x)) True

Concern: Intuitively,
these people should

@ be irrelevant.
m

“Some smiling person wears a hat.” True

—

Ix. (Smiling(x) A WearingHat(x)) True

Ix. (Smiling(x) - WearingHat(x)) True

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.”

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

Ix. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) = WearingHat(x))

@@
@@

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) - WearingHat(x)) True

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) =» WearingHat(x)) True

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False
PSmnrgbag—WearmmgHatbg) True

“Some P is a Q”

translates as

3x. (P(x) A Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

3x. (P(x) A Q(x))

It x is an example, it must
have property P on top of
property Q.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

@@

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

@@

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

@@

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) True

Vx. (Smiling(x) —» WearingHat(x))

@@

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) True

Vx. (Smiling(x) - WearingHat(x)) True

@@

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) True

Vx. (Smiling(x) - WearingHat(x)) True

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

o =~ &

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

o =~ &

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

@@
>0 5

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) —» WearingHat(x))

@ @@
@ _MoT

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) - WearingHat(x)) True

&

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) - WearingHat(x)) True

o

Every smiling person wears a hat.” True

YoeASmilingbonrWearingHat(x)) False
Vx. (Smiling(x) » WearingHat(x)) True

“All P's are Q's”

translates as

Vx. (P(x) - Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

Vx. (P(x) - Q(x))

It x is a counterexample, it
musT have property P but
not have properly Q.

Good Pairings

 The V quantifier usually is paired with -.

Vx. (P(x) » Q(x))

 The 1 quantifier usually is paired with A.

Ix. (P(x) A Q(x))

* In the case of V, the — connective prevents the
statement from being false when speaking about some
object you don't care about.

* In the case of 4, the A connective prevents the
statement from being true when speaking about some
object you don't care about.

Next Time

o First-Order Translations
« How do we translate from English into first-order logic?
* Quantifier Orderings

 How do you select the order of quantifiers in first-order
logic formulas?

 Negating Formulas

 How do you mechanically determine the negation of a
first-order formula?

 Expressing Uniqueness

« How do we say there’s just one object of a certain type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151

