
  

First-Order Logic
Part One



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Take out a sheet of paper!



  

What's the truth table for the → connective?



  

What's the negation of p → q?



  

New Stuff!



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called 
constant symbols. Unlike 
propositional variables, they 

refer to objects, not 
propositions.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look 
like function calls are called 
predicates. Predicates take 
objects as arguments and 
evaluate to true or false.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:

Cute(Quokka)    

ArgueIncessantly(Democrats, Republicans)  
● Applying a predicate to arguments produces a 

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll 

have a list of predicates, what they stand for, and 
how many arguments they take. It’ll be given 
separately than the formulas you write.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are 
functions. Functions take 

objects as input and 
produce objects as output.



  

Functions

● First-order logic allows functions that return 
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Predicates

● When working in first-order logic, be careful 
to keep objects (actual things) and 
propositions (true or false) separate.

● You cannot apply connectives to objects:

        ⚠          Venus → TheSun                  ⚠
● You cannot apply functions to propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask! 



  

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



  

One last (and major) change



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if there exists a choice of x where 
some-formula is true when that x is 
plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall 
statement true or 

false?



  ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified 
statements are false in an 

empty world, since nothing 
exists, period!



  

Some Technical Details



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x 
just lives here.

The variable y 
just lives here.



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x 
just lives here.

A different variable, 
also named x, just 

lives here.



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, 
quantifiers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

        ⚠ (∃x. P(x))  ∧  (R(x) ∧ Q(x))        ⚠
● This is syntactically invalid because the variable x is out 

of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put 
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified 
statements are said to be 
vacuously true in empty 

worlds.



  

Time-Out for Announcements!



  

Stanford Daily Tech Team
● The Stanford Daily is looking for 

students for their tech team.
● In their own words: “At The Daily, 

you’ll have the opportunity to 
take on a wide gamut of projects 
— building our website and 
mobile app, creating special 
custom formats and features for 
use in our articles, helping us 
leverage analytics, or managing 
our data and server architecture. 
You’ll also have plenty of 
opportunities to start your own 
projects.”

● Apply online at 
https://bit.ly/3CE0ym0 by 5PM 
on Friday, October 1st.

https://bit.ly/3CE0ym0


  

Your Questions



  

“What areas of math should I focus on for 
the CS AI track and what is the minimum 

depth I should go in math?”

If you’re looking at AI, I’d recommend focusing on linear algebra 
and probability theory.

 

I can’t overstate how important linear algebra is across basically all 
branches of CS. Math 51 is a great start. Math 104 or Math 113 are 

great follow-up classes.
 

For probability, CS109 is a great launching point and is probably 
enough for much of what you’ll do. If you want to learn more, 

you can look at classes in Math and Stats to back that up.
 

More generally, here’s a list of the math electives for CS and 
some advice about how to pick them.

https://quip.com/J7dBAj8L6Sk2/Math-Classes-for-Computer-Science


  

“What's something that you wish you 
did/took advantage of as a Stanford 

undergrad?”

Stanford is an amazing institution with world-class departments in 
basically every field. I’m really happy with the classes I took, 

though in retrospect I should have branched out a bit more and 
taken classes across more departments. It’s harder to learn 

creative writing, art history, political philosophy, etc. once you 
graduate, though it’s definitely still possible.

I also can’t understate just how impressive a group of people you 
are and how lucky you are to get to live, study, and work with 
each other. Make lasting friendships with one another and go out 

of your way to meet each other. 



  

“Many tech companies want to hear about 
projects students have worked on, but after 

taking 106A and 106B, I feel like I don't have any 
to show. Do you have advice for finding time to 

start projects or classes that focus on projects?”

If you’re early on in CS, it’s completely normal to not have a lot of 
project experience – after all, you’re just getting started! Feel free 
to talk about what you’ve worked on for your classes. That’s perfectly 
fine! Just make sure to delimit what part you did and what part was in 
the starter files. As you take more CS classes, you’ll naturally start 

building up this kind of experience. Project-based classes in graphics, 
HCI, systems, and AI are great for this.

 

Some companies specifically ask about side projects – things you’ve done 
in your spare time. IMHO, that’s not a great question to ask. I know 
many great engineers who basically don’t code outside of work. But if 

you do want to do a project, make it something you actually are 
interested in. Otherwise it’s really easy to burn out.



  

Back to CS103!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Need to take a negation? Translate your 
statement into FOL, negate it, then 
translate it back.

● Want to prove something by contrapositive? 
Translate your implication into FOL, take 
the contrapositive, then translate it back.



  

Translating Into Logic

● When translating from English into first-
order logic, we recommend that you

think of first-order logic as a 
mathematical programming 

language.
● Your goal is to learn how to combine 

basic concepts (quantifiers, connectives, 
etc.) together in ways that say what you 
mean.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

some smiling person wears a hat.



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True

True

Concern: Intuitively, 
these people should 

be irrelevant.



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

True

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the 

statement from being false when speaking about some 
object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking about some 
object you don't care about.



  

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order 

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a 
first-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?
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