First-Order Logic

Part One



Recap from Last Time



Recap So Far

* A propositional variable is a variable that is
either true or false.

 The propositional connectives are as follows:
* Negation: —p
 Conjunction: p A g
* Disjunction: p v g
* Implication: p — ¢
* Biconditional: p < ¢
e True: T
» False: L



Take out a sheet of paper!



What's the truth table for the — connective?



What's the negation of p — g?



New Stuff!



First-Order Logic



What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

 predicates that describe properties of
objects,

* functions that map objects to one another,
and

 quantifiers that allow us to reason about
multiple objects.



Some Examples



Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)



You, Eggs You, Tomato You, Shakshuka
You, History You, History

MyHeart, Havana Him, Me, EastAtlanta

These blue ferms are called
constant symbols, ULnlike
proposifional variables, they
reter To objects, not
propositions,




Likes(You, Eggs) n Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) n TookBackTo(Him, Me, EastAtlanta)

The rved things thal look
like function calls are called
predicates, Predicates fake
objects as arguments and
evaluate fo frue or false,




Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives, Because each predicate
evaluates to true or talse, we can

connect the fruth values of predicates
using normal propositional connectives,




Reasoning about Objects

« To reason about objects, first-order logic uses
predicates.

 Examples:

Cute(Quokka)
Arguelncessantly(Democrats, Republicans)

* Applying a predicate to arguments produces a
proposition, which is either true or false.

» Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.



First-Order Sentences

* Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) — Dikdik(a) v Kitty(a) v Puppy(a)
Succeeds(You) < Practices(You)

X<8-x<137

— —

The less—than sign is Numbers are not ‘built
just another predicate, in“ to first—order
Binary predicafes are logic. They've constant
somelimes written in symbols just like *You"
infix notation this way, and *a* above.,




Equality

» First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

* Equality is a part of first-order logic, just as —
and — are.

« Examples:
TomMarvoloRiddle = LordVoldemort
MorningStar = EveningStar

* Equality can only be applied to objects; to
state that two propositions are equal, use <.



Let's see some more examples.



FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



FavoriteMovieOf(You) = FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions., Functions Take
objects as input and
produce objects as outpuf,




Functions

First-order logic allows functions that return
objects associated with other objects.

Examples:
ColorOf(Money)
MedianOf(x, y, 2)
X+y

As with predicates, functions can take in any
number of arguments, but always return a single
value.

Functions evaluate to objects, not propositions.



Objects and Predicates

« When working in first-order logic, be caretful
to keep objects (actual things) and
propositions (true or false) separate.

* You cannot apply connectives to objects:
Venus —» TheSun
* You cannot apply functions to propositions:
StarOf(IsRed(Sun) A IsGreen(Mars))
* Ever get conftused? just ask!



The Type-Checking Table

... operate on ... | ... and produce
Connectives . .
(o A, etc.) propositions a proposition
Predicates : .
(=, etc.) objects a proposition
Functions ... objects an object




One last (and major) change



Some muggle is intelligent.

dm. (Muggle(m) A Intelligent(m))

—

3 is the existential quantifier

and says ‘tor some choice of
m, the tollowing is true,”




The Existential Quantifier

A statement of the form
dx. some-formula

1s true if there exists a choice of x where
some-formula is true when that x is
plugged into it.

 Examples:
dx. (Even(x) N Prime(x))
dx. (TallerThan(x, me) N LighterThan(x, me))
(dw. Will(w)) —» (Ix. Way(x))



The Existential Quantifier

@

Since Smiling(x)

is true for some
choice of x, this
statement
evaluates to true.

dx. Smiling(x)



The Existential Quantifier

dx. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.




The Existential Quantifier

@

(Ix. Smiling(x)) = (dy. WearingHat(y))



The Existential Quantifier

@

Is this overall
statement true or
false?




Fun with Edge Cases

Existentially-quantified
statements are false in an
empty world, since nothing
exists, period!




Some Technical Details



Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (dy. Loves(y, You))

The variable x The variable y
just lives here, just lives here,




Variables and Quantifiers

« Each quantifier has two parts:

* the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (Ix. Loves(x, You))

The variable x A ditferent variable,
just lives here, also named x, just
lives here.




Operator Precedence (Again)

When writing out a formula in first-order logic,
quantifiers have precedence just below —.

The statement
dx. P(x) A R(x) A Q(x)
is parsed like this:
(Ix. P()) A (R() A QX))

This is syntactically invalid because the variable x is out
of scope in the back half of the formula.

To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantity:

dx. (P(x) A R(x) A Q(x))



“For any natural number n,
n is even if and only if n? is even”

Vn. (n € N = (Even(n) < Even(n?)))

‘\

V is the universal quantifier

and says ‘ftor any choice of n,
the tollowing is frue,*




The Universal Quantifier

A statement of the form
Vx. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

« Examples:

Vp. (Puppy(p) — Cute(p))
Va. (EatsPlants(a) v EatsAnimals(a))

Tallest(SultanKosen) —
Vx. (SultanKosen # x — ShorterThan(x, SultanKosen))



The Universal Quantifier

Vx. Smiling(x)

&

Since Smiling(x)
is true for every
choice of x, this

statement

evaluates to true.




The Universal Quantifier

false for this choice
x, this statement

\/ S l E ) evaluates to false.

Since Smiling(x) is




The Universal Quantifier

(Vx. Smiling(x)) = (Vy. WearingHat(y))



The Universal Quantifier

@ Is this overall

statement true or
false in this
scenario?

(Vx. Smiling(x)) = (Vy. WearingHat(y))



Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty
worlds.

Vx. Smiling(x)



Time-Out for Announcements!



Stanford Daily Tech Team

N@©IN » The Stanford Daily is looking for

_ r students for their tech team.
QEIJB étantﬂt-?EanIE}rlE[EM * In their own words: “At The Daily,

you’ll have the opportunity to
take on a wide gamut of projects

o .
PPortunities for any experience level

WIHIAT YOU CAN — building our website and
. bml.d our'webs:te and r.noblle. app mobile app, Creating Special
« design & implement unique site layouts
e custom formats and features for
« manage our data and server architecture use in our articles, helplng us
® IR YORE QW IRET) Ogacts leverage analytics, or managing

By our data and server architecture.
I )
Alumni have gone on ¢ g.ech You'll also have plenty of
WASH,NGTON POST ENG/ © work at THE t it t tart
NEERING TEAM opportunities to start your own
NOTION and Googy g projects.”

Please feel free to reach out to
Sam Catania at tech@stanforddaily.com with questions!

» Apply online at
https://bit.ly/3CEOymO0 by 5PM
on Friday, October 1,


https://bit.ly/3CE0ym0

Your Questions



“What areas of math should I focus on for
the CS Al track and what is the minimum
depth I should go in math?”

It youre looking at AI, I'd recommend ftocusing on linear algebra
and probability theory,

1 can't overstate how important linear algebra is across basically all
branches of CS, Math 51 is a greal starf. Math 104 or Math 13 are
greal tollow—up classes.

For probability, CS109 is a greal launching point and is probably
enough for much ot what youll do., If you want fo learn more,
you can look at classes in Math and Sfats fo back that up.

More generally, here’s a list of the math electives for CS and
some advice about how fo pick them,



https://quip.com/J7dBAj8L6Sk2/Math-Classes-for-Computer-Science

“What's something that you wish you
did/took advantage of as a Stanford
undergrad?”

Stanford is an amazing instifution with world—class departments in
basically every field, I'm veally happy with the classes 1 took,
though in refrospect 1 should have branched ouf a bit more and
taken classes across more deparfments, It's harder to learn
creative writing, art history, polifical philosophy, efc. once you
graduate, fhough it’s definifely still possible,

1 also can't understafe just how impressive a group of people you
are and how lucky you are fo get fo live, study, and work with

each ofher, Make lasting friendships with one another and go out

ot your way To meet each other,




“Many tech companies want to hear about
projects students have worked on, but after
taking 106A and 106B, I feel like I don't have any
to show. Do you have advice for finding time to
start projects or classes that focus on projects?”

It you're early on in CS, it's completely normal fo wnot have a lot of
project experience — after all, youre just gefting starfed: Feel free
fo talk about what you've worked on tor your classes, That's perfectly
finer Just make sure to delimit what part you did and what part was in
the starter files, As you take more CS classes, youwll naturally start
building up this kind ot experience, Project—based classes in graphics,
HCI, systems, and Al are greal tor this,

Some companies specifically ask about side projects - things you've done
in your spare Time, IMHO, that’s not a greal question To ask, I know
many great engineers who basically dont code outside of work, But if
you do want to do a project, make it something you actually are
inferested in, Ofherwise i1’s really easy To burn oud.




Back to CS103!



Translating into First-Order Logic



Translating Into Logic

» First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

* Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

 Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.



Translating Into Logic

« When translating from English into first-
order logic, we recommend that you

think of first-order logic as a
mathematical programming
language.

* Your goal is to learn how to combine
basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.



Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

some smiling person wears a hat.



Concern: Intuitively,
these people should

@ be irrelevant.
m

“Some smiling person wears a hat.” True

—

Ix. (Smiling(x) A WearingHat(x)) True

Ix. (Smiling(x) - WearingHat(x)) True




@@
@@

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) - WearingHat(x)) True



o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False
PSmnrgbag—WearmmgHatbg)  True




“Some P is a Q”

translates as

3x. (P(x) A Q(x))



Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

3x. (P(x) A Q(x))

It x is an example, it must
have property P on top of
property Q.




Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.



@@

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) True

Vx. (Smiling(x) - WearingHat(x)) True



@@
>0 5

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) —» WearingHat(x))




o

Every smiling person wears a hat.” True

YoeASmilingbonrWearingHat(x)) False
Vx. (Smiling(x) » WearingHat(x)) True




“All P's are Q's”

translates as

Vx. (P(x) - Q(x))



Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

Vx. (P(x) - Q(x))

It x is a counterexample, it
musT have property P but
not have properly Q.




Good Pairings

 The V quantifier usually is paired with -.

Vx. (P(x) » Q(x))

 The 1 quantifier usually is paired with A.

Ix. (P(x) A Q(x))

* In the case of V, the — connective prevents the
statement from being false when speaking about some
object you don't care about.

* In the case of 4, the A connective prevents the
statement from being true when speaking about some
object you don't care about.



Next Time

o First-Order Translations
« How do we translate from English into first-order logic?
* Quantifier Orderings

 How do you select the order of quantifiers in first-order
logic formulas?

 Negating Formulas

 How do you mechanically determine the negation of a
first-order formula?

 Expressing Uniqueness

« How do we say there’s just one object of a certain type?
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