

First-Order Logic
Part One

Recap from Last Time

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Take out a sheet of paper!

What's the truth table for the → connective?

What's the negation of p → q?

New Stuff!

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)
● Applying a predicate to arguments produces a

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll

have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

Functions

● First-order logic allows functions that return
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Predicates

● When working in first-order logic, be careful
to keep objects (actual things) and
propositions (true or false) separate.

● You cannot apply connectives to objects:

 ⚠ Venus → TheSun ⚠
● You cannot apply functions to propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask!

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object

One last (and major) change

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if there exists a choice of x where
some-formula is true when that x is
plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

 ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an

empty world, since nothing
exists, period!

Some Technical Details

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x
just lives here.

The variable y
just lives here.

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x
just lives here.

A different variable,
also named x, just

lives here.

Operator Precedence (Again)

● When writing out a formula in first-order logic,
quantifiers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

 ⚠ (∃x. P(x)) ∧ (R(x) ∧ Q(x)) ⚠
● This is syntactically invalid because the variable x is out

of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

 ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty

worlds.

Time-Out for Announcements!

Stanford Daily Tech Team
● The Stanford Daily is looking for

students for their tech team.
● In their own words: “At The Daily,

you’ll have the opportunity to
take on a wide gamut of projects
— building our website and
mobile app, creating special
custom formats and features for
use in our articles, helping us
leverage analytics, or managing
our data and server architecture.
You’ll also have plenty of
opportunities to start your own
projects.”

● Apply online at
https://bit.ly/3CE0ym0 by 5PM
on Friday, October 1st.

https://bit.ly/3CE0ym0

Your Questions

“What areas of math should I focus on for
the CS AI track and what is the minimum

depth I should go in math?”

If you’re looking at AI, I’d recommend focusing on linear algebra
and probability theory.

I can’t overstate how important linear algebra is across basically all
branches of CS. Math 51 is a great start. Math 104 or Math 113 are

great follow-up classes.

For probability, CS109 is a great launching point and is probably
enough for much of what you’ll do. If you want to learn more,

you can look at classes in Math and Stats to back that up.

More generally, here’s a list of the math electives for CS and
some advice about how to pick them.

https://quip.com/J7dBAj8L6Sk2/Math-Classes-for-Computer-Science

“What's something that you wish you
did/took advantage of as a Stanford

undergrad?”

Stanford is an amazing institution with world-class departments in
basically every field. I’m really happy with the classes I took,

though in retrospect I should have branched out a bit more and
taken classes across more departments. It’s harder to learn

creative writing, art history, political philosophy, etc. once you
graduate, though it’s definitely still possible.

I also can’t understate just how impressive a group of people you
are and how lucky you are to get to live, study, and work with
each other. Make lasting friendships with one another and go out

of your way to meet each other.

“Many tech companies want to hear about
projects students have worked on, but after

taking 106A and 106B, I feel like I don't have any
to show. Do you have advice for finding time to

start projects or classes that focus on projects?”

If you’re early on in CS, it’s completely normal to not have a lot of
project experience – after all, you’re just getting started! Feel free
to talk about what you’ve worked on for your classes. That’s perfectly
fine! Just make sure to delimit what part you did and what part was in
the starter files. As you take more CS classes, you’ll naturally start

building up this kind of experience. Project-based classes in graphics,
HCI, systems, and AI are great for this.

Some companies specifically ask about side projects – things you’ve done
in your spare time. IMHO, that’s not a great question to ask. I know
many great engineers who basically don’t code outside of work. But if

you do want to do a project, make it something you actually are
interested in. Otherwise it’s really easy to burn out.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

● First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

● Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

● Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic

● When translating from English into first-
order logic, we recommend that you

think of first-order logic as a
mathematical programming

language.
● Your goal is to learn how to combine

basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

some smiling person wears a hat.

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True

True

Concern: Intuitively,
these people should

be irrelevant.

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

True

True

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the

statement from being false when speaking about some
object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about some
object you don't care about.

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a
first-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

