

First-Order Logic
Part Two

Recap from Last Time

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

many objects at once.

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

“All A's are B's”

translates as

∀x. (A(x) → B(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (A(x) → B(x))

If x is a counterexample, it
must have property A but

not have property B.

“Some A is a B”

translates as

∃x. (A(x) ∧ B(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (A(x) ∧ B(x))

If x is an example, it must
have property A on top of

property B.

New Stuff!

The Aristotelian Forms

“All As are Bs”

∀x. (A(x) → B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“No As are Bs”

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to
memory. We’ll be using them throughout
the day and they form the backbone of

many first-order logic translations.

The Art of Translation

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person
loves someone else.”

Every person loves someone else

Every person loves some other person

Every person p loves some other person

∀p. (Person(p) →
p loves some other person

)

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →
there is some other person that p loves

)

∀p. (Person(p) →
there is a person other than p that p loves

)

∀p. (Person(p) →
there is a person q, other than p, where p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where

p loves q

)

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a
person that everyone else loves.”

There is a person that everyone else loves

There is a person p where everyone else loves p

∃p. (Person(p) ∧
everyone else loves p

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧
every other person q loves p

)

∃p. (Person(p) ∧
every person q, other than p, loves p

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

 ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

 Loves(p, q)
)
)

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Every person loves someone
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

 Loves(p, q)
)
)

 ∃q. (Person(q) ∧ p ≠ q ∧

 ∀q. (Person(q) ∧ p ≠ q → ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)
)
)

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves. Loves(q, p)
)
)

 ∀q. (Person(q) ∧ p ≠ q →
∃p. (Person(p) ∧

 Loves(q, p)

 Loves(p, q)
 ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

)

)
)

There is a person…

… that everyone else …

… loves.

Every Person Loves Someone Else

No one here
is universally

loved.

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

Every Person Loves Someone Else and
There is Someone Everyone Else Loves

∧

 ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

 Loves(p, q)
)
)

For every person…

… there is another person …

… they love

∀p. (Person(p) →

 Loves(p, q)
)
)

 ∃q. (Person(q) ∧ p ≠ q ∧

and

 ∀q. (Person(q) ∧ p ≠ q → ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)
)
)

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves. Loves(q, p)
)
)

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

● The choice of y can be different every
time and can depend on x.

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifiers!

Time-Out for Announcements!

Problem Set Two

● Problem Set One was due today at 2:30PM.
● Didn’t submit by then? Ping us ASAP.

● Problem Set Two goes out today. It’s due next Friday
at 2:30PM.
● Explore first-order logic, and expand your proofwriting

repertoire.
● We have some online readings for this problem set.

● Check out the Guide to Logic Translations for more on
how to convert from English to FOL.

● Check out the Guide to Negations for information about
how to negate formulas.

● Check out the First-Order Translation Checklist for
details on how to check your work.

Your Questions

“What was your most embarrassing
moment in college?”

I went to a
conference. I packed
my suit and forgot my
dress shoes. Hilarity

ensued.

“Tips for CS co-term recommendations if
you've only taken large lecture classes &

don't know professors personally?”

Two things:

1. Come talk to us! One of the best parts of this job is getting to
meet people. So don’t be a stranger – chat with me after class, send

me emails, etc.

2. Specifically for coterm rec letters: it’s totally fine to ask someone
for a DWIC letter (“Did Well In Class.”) After all, with the coterm,
you’re signing up to take more CS courses, so a rec like that actually
provides a good signal. That’s especially true for pandemic classes

where the instructor can then give more detailed feedback.

Back to CS103!

Set Translations

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty set
exists.”

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

The empty set exists.(
(
(

There is some set S that is empty.(
(
(

∃S. (Set(S) ∧
S is empty. ∧

)

∃S. (Set(S) ∧
there are no elements in S∧

)

∃S. (Set(S) ∧
¬there is an element in S

)

∃S. (Set(S) ∧
¬there is an element x in S

)

∃S. (Set(S) ∧
¬∃x. x ∈ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
there are no elements in S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object x does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct.
Just like in propositional logic, there are

many different equivalent ways of
expressing the same statement in first-

order logic.

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Why can we switch which
quantifier we’re using here?

Mechanics: Negating Statements

An Extremely Important Table

For all choices of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For all choices of x,
¬P(x)

For all choices of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For all choices of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all choices of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For all choices of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. A is equivalent to ∃x. ¬A

¬∃x. A is equivalent to ∀x. ¬A

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

● The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) is equivalent to p → ¬q

¬(p → q) is equivalent to p ∧ ¬q
● These identities are useful when negating

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifiers

● What is the negation of the following statement, which
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “no puppy is cute.”
● Do you see why this is the negation of the original

statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)

Restricted Quantifiers

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is empty.)

Quantifying Over Sets

● The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but

please do not use variants of this syntax.
● For example, don't do things like this:

⚠ ∀x with P(x). Q(x) ⚠

⚠ ∀y such that P(y) ∧ Q(y). R(y). ⚠

⚠ ∃P(x). Q(x) ⚠

Expressing Uniqueness

Using the predicate

 - WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means “there is only
one way to find out.”

There is only one way to find out. ∀
∀
∀

Something is a way to find out, and nothing else is. ∀
∀
∀

Some thing w is a way to find out, and nothing else is. ∀
∀
∀

Some thing w is a way to find out, and nothing besides w
is a way to find out∀
∀

∃w. (WayToFindOut(w) ∧
nothing besides w is way to find out ∀

)

∃w. (WayToFindOut(w) ∧
anything that isn't w isn't a way to find out ∀

)

∃w. (WayToFindOut(w) ∧
any thing x that isn't w isn't a way to find out ∀∀

)

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → x isn't a way to find out)

)

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)

Expressing Uniqueness

● To express the idea that there is exactly one object
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier”
used to express this:

∃!x. P(x)
● For the purposes of CS103, please do not use this

quantifier. We want to give you more practice using
the regular ∀ and ∃ quantifiers.

Next Time

● Functions
● How do we model transformations and

pairings?
● First-Order Definitions

● Where does first-order logic come into all of
this?

● Proofs with Definitions
● How does first-order logic interact with proofs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

