
  

First-Order Logic
Part Two



  

Recap from Last Time



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

many objects at once.



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

“All A's are B's”

translates as

∀x. (A(x) → B(x))



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (A(x) → B(x))

If x is a counterexample, it 
must have property A but 

not have property B.



  

“Some A is a B”

translates as

∃x. (A(x) ∧ B(x))



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (A(x) ∧ B(x))

If x is an example, it must 
have property A on top of 

property B.



  

New Stuff!



  

The Aristotelian Forms

“All As are Bs”
 

∀x. (A(x) → B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))

“No As are Bs”
 

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”
 

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to 
memory. We’ll be using them throughout 
the day and they form the backbone of 

many first-order logic translations.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person 
loves someone else.”



  

Every person loves someone else 
 
 
 
 



  

Every person loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∀p. (Person(p) → 
there is some other person that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person other than p that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where p loves q 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 

p loves q 

) 



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a 
person that everyone else loves.”



  

There is a person that everyone else loves 
 
 
 
 



  

There is a person p where everyone else loves p
 
 
 
 



  

∃p. (Person(p) ∧ 
everyone else loves p

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))



  

∃p. (Person(p) ∧ 
every other person q loves p

)



  

∃p. (Person(p) ∧ 
every person q, other than p, loves p

)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

 

∀x. (A(x) → B(x))



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Every person loves someone 
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 



  

    ∀q. (Person(q) ∧ p ≠ q →     ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)
    )
)

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves.         Loves(q, p)
    )
)



  

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)

        Loves(p, q)
    ∃q. (Person(q) ∧ p ≠ q ∧ 
∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

    )

    )
)

There is a person…

… that everyone else …

… loves.



  

Every Person Loves Someone Else

No one here 
is universally 

loved.



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.



  

Every Person Loves Someone Else and
There is Someone Everyone Else Loves



  

∧     

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

For every person…

… there is another person …

… they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 

and

    ∀q. (Person(q) ∧ p ≠ q →     ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)
    )
)

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves.         Loves(q, p)
    )
)



  

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice of x, there's some 
choice of y where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set One was due today at 2:30PM.
● Didn’t submit by then? Ping us ASAP.

● Problem Set Two goes out today. It’s due next Friday 
at 2:30PM.
● Explore first-order logic, and expand your proofwriting 

repertoire.
● We have some online readings for this problem set.

● Check out the Guide to Logic Translations for more on 
how to convert from English to FOL.

● Check out the Guide to Negations for information about 
how to negate formulas.

● Check out the First-Order Translation Checklist for 
details on how to check your work.



  

Your Questions



  

“What was your most embarrassing 
moment in college?”

I went to a 
conference. I packed 
my suit and forgot my 
dress shoes. Hilarity 

ensued.



  

“Tips for CS co-term recommendations if 
you've only taken large lecture classes & 

don't know professors personally?”

Two things:

1. Come talk to us! One of the best parts of this job is getting to 
meet people. So don’t be a stranger – chat with me after class, send 

me emails, etc.

2. Specifically for coterm rec letters: it’s totally fine to ask someone 
for a DWIC letter (“Did Well In Class.”) After all, with the coterm, 
you’re signing up to take more CS courses, so a rec like that actually 
provides a good signal. That’s especially true for pandemic classes 

where the instructor can then give more detailed feedback.



  

Back to CS103!



  

Set Translations



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty set 
exists.”

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?



  

The empty set exists.(
(
(



  

There is some set S that is empty.(
(
(



  

∃S. (Set(S) ∧ 
S is empty. ∧

)



  

∃S. (Set(S) ∧ 
there are no elements in S∧

)



  

∃S. (Set(S) ∧ 
¬there is an element in S

)



  

∃S. (Set(S) ∧ 
¬there is an element x in S

)



  

∃S. (Set(S) ∧ 
¬∃x. x ∈ S

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
there are no elements in S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object x does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct. 
Just like in propositional logic, there are 

many different equivalent ways of 
expressing the same statement in first-

order logic.



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Why can we switch which 
quantifier we’re using here?



  

Mechanics: Negating Statements



  

An Extremely Important Table

For all choices of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For all choices of x,
¬P(x)

For all choices of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For all choices of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all choices of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For all choices of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. A   is equivalent to   ∃x. ¬A

¬∃x. A   is equivalent to   ∀x. ¬A

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q)     is equivalent to     p → ¬q

¬(p → q)     is equivalent to     p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we 
strongly recommend using the above equivalences 
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifiers

● What is the negation of the following statement, which 
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “no puppy is cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)



  

Restricted Quantifiers



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) 
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S 
where P(x) holds.” (It’s false if S is empty.)



  

Quantifying Over Sets

● The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but 

please do not use variants of this syntax.
● For example, don't do things like this:

⚠                  ∀x with P(x). Q(x)                     ⚠

⚠        ∀y such that P(y) ∧ Q(y). R(y).           ⚠

⚠                       ∃P(x). Q(x)                           ⚠

   



  

Expressing Uniqueness



  

Using the predicate

   - WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means “there is only 
one way to find out.”



  

There is only one way to find out. ∀
∀
∀



  

Something is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing besides w 
is a way to find out∀
∀



  

∃w. (WayToFindOut(w) ∧ 
nothing besides w is way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
anything that isn't w isn't a way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
any thing x that isn't w isn't a way to find out ∀∀

)



  

∃w. (WayToFindOut(w) ∧ 
∀x. (x ≠ w → x isn't a way to find out)

)



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

Expressing Uniqueness

● To express the idea that there is exactly one object 
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier” 
used to express this:

∃!x. P(x)  
● For the purposes of CS103, please do not use this 

quantifier. We want to give you more practice using 
the regular ∀ and ∃ quantifiers.



  

Next Time

● Functions
● How do we model transformations and 

pairings?
● First-Order Definitions

● Where does first-order logic come into all of 
this?

● Proofs with Definitions
● How does first-order logic interact with proofs?
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