Functions



Outline for Today

* What is a Function?

* It’s more nuanced than you might expect.
* Domains and Codomains

 Where functions start, and where functions end.
* Defining a Function

« Expressing transformations compactly.
* Special Classes of Functions

« Useful types of functions you’ll encounter IRL.
 Proofs on First-Order Definitions

« A key skill.



What is a function?



Functions, High-School Edition



Y

f(x) =x*-bx*+14






Functions, High-School Edition

* In high school, functions are usually given as
objects of the form

X°+3x%+15x+7

1—x

« What does a function do?

» It takes in as input a real number.
It outputs a real number

* ... except when there are vertical asymptotes or
other discontinuities, in which case the function
doesn't output anything.



Functions, CS Edition



int flipUntil(int n) {
int numHeads =
int numTries

3

0:;
0;

while (numHeads < n) {
if (randomBoolean()) {
numHeads++;

¥

numTries++;

}

return numTries;




Functions, CS Edition

* In programming, functions
 might take in inputs,
* might return values,
 might have side etfects,
 might never return anything,
 might crash, and

 might return ditferent values when called
multiple times.



What's Common?

* Although high-school math functions and
CS functions are pretty different, they
have two key aspects in common:

 They take in inputs.
 They produce outputs.

* In math, we like to keep things easy, so
that's pretty much how we're going to
define a function.



High-Level Intuition:
A function is an object f that takes in

exactly one input x and produces exactly
one output f(x).

X ]c fx) _

(This is not definition. It’s just to
help you build and intuition.)




High School versus CS Functions

* In high school, functions usually were given by a rule:
f(x) =4x + 15
* In CS, functions are usually given by code:

int factorial(int n) {
int result = 1;
for (int 1 = 1; 1 <= n; 1++) {
result *= 1i;
}

return result;

}

 What sorts of functions are we going to allow from a
mathematical perspective?



Dikdik

Nubian
Ibex

Sloth







... but also ...



flx) =x*+ 3x-15



In mathematics, functions are deterministic.

That is, given the same input, a function must
always produce the same output.

The following is a pertectly valid piece of
C++ code, but it’s not a valid function under
our definition:

int randomNumber(int numOutcomes) {
return rand() % numOutcomes;
}



One Challenge



f(x) =x2+2x+5



f(x) =x2+2x+5

f(3)=32+3-2+5 =20



f(x) =x2+2x+5



f(xX) =x2+2x+5






We need to make sure we can't apply
functions to meaningless inputs.



Domains and Codomains

« Every function f has two sets associated with it: its

domain and its codomain.

« A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the

codomain.

The function
must be defined
for every element
of the domain.

Domain

O

O

O

Codomain

The output of the
function must
always be in the
codomain, but
not all elements
of the codomain
must be
produced as
outputs.




Domains and Codomains

« Every function f has two sets associated with it: its
domain and its codomain.

« A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the

codomain.
The domain of this function
is R. Any real number can be
provided as input.
' \
double absoluteValueOf(double x) {

The codomain of this function is if (x >=0) {
R. Everything produced is a real return Xx;
number, but not all real numbers } else {

can be produced. return -x;

}



Domains and Codomains

« If fis a function whose domain is A and whose
codomain is B, we write f: A - B.

 Think of this like a “function prototype” in C++.

Return Argument Argument Return
Lype Lype type Lype
B f(A arg); f:A->B

Function Function
name name




Domains and Codomains

« If fis a function whose domain is A and whose
codomain is B, we write f: A - B.

 Think of this like a “function prototype” in C++.

Codomain Domain Domain Codomain

B f(A arg); f:A-B

Function Function
name name




The Official Rules for Functions

 Formally speaking, we say that f: A — B if the following
two rules hold.

« First, f must be obey its domain/codomain rules:

Vae€A.3db € B.f(a) =b
(“Every input in A maps to some output in B.”)

 Second, f must be deterministic:

Va: € A. Va:z € A. ((11 = dz - f(al) - f(dZ))
(“Equal inputs produce equal outputs.”)

 If you're ever curious about whether something is a
function, look back at these rules and check! For example:

« Can a function have an empty domain?
* Can a function have an empty codomain?



Defining Functions



Defining Functions

» To define a function, you need to
« specify the domain,
» specify the codomain, and
* give a rule used to evaluate the function.

« All three pieces are necessary.

e We need to domain to know what the function can be
applied to.

 We need to codomain to know what the output space is.
« We need the rule to be able to evaluate the function.

 There are many ways to do this. Let’s go over a few
examples.



White-Tailed Anna’s Red-Shouldered
Kite Hummingbird Hawk

Functions can be defined as a picture.
Draw the domain and codomain explicitly.
Then, add arrows to show the outputs.



f:7Z — Z, where
flx) =x*+ 3x-15

Functions can be defined as a rule.
Be sure to explicitly state what the
domain and codomain are!



f:7Z — N, where

e

In 1 n=0
f(n)_\—n if n<0

Some rules are given piecewise. We select which
rule to apply based on the conditions on the right.
(Just make sure at least one condition applies and that
all applicable conditions give the same result!)



Some Nuances



O X+2
fix) = 3

This expression isn’t
defined when x = -1, so f
isn’t defined over its full

domain. We therefore
don’t consider it to be a

function.

Is this a function from R to R?



O X+2
fix) = 3

Yep, it’s a function! Every
natural number maps to
some real number.

Is this a function from N to R?



Stanford > Cardinal

Berkeley >  Blue
Michigan / > Gold
Arkansas \: White

Is this a function from A to B?



California Montpelier

New York Sacramento
Vermont Albany
Washington
DC

Is this a function from A to B?



izl 93

Is this a function from A to B?



int squigglebah(int input) {
i1f (randomCoinTossIsHeads()) {
return input;
} else {

return -input;
}

} This piece of code is not
deterministic. Calling
squigglebah(137) multiple times
might give back different values.
It’s therefore not a function in
the mathematical sense.

Is this a function from Z to Z?



int pizkwat(int input) {
int steps = 0;
while (input != 0) {
input -= 2;
steps++;

¥

return steps;

This code never produces a value
when called on the input 137. It’s
therefore not defined for all
elements of the domain, so it’s
not a function in the
mathematical sense.

Is this a function from Z to Z?



Time-Out for Announcements!



EdStem

« We've set up threads on EdStem
associated with each problem on the
problem set.

« Have a question on a specific problem?
Check that thread, and feel free to post
your question there!



-

L] 1

STANFORD WOMEN IN COMPUTER SCIENCE

FALL
OPPORTUNITIES

Learn more at bit.ly/wicsfall

INTERN FELLOWS OUTREACH

Our community welcomes anyone interested in joining!

ACTIVITIES FAIR: SEPT 28, 4-7 PM @ WHITE PLAZA
INFO SESSION: SEPT 30, 3:30 PM @ BIT.LY/WICSINFO21




Code the Change

* Code the Change is a group that builds software for
nonprofit groups.

 They’'ve been around for over a decade and have
received a bunch of awards and press coverage.

* Interested in joining? There’s an info session tonight
from 7PM - 8PM at this link:

http://tinyurl.com/ctcinfo21

* You can also fill out this form to get added to their
Slack group:

https://forms.gle/DFM786dDjexZY8cd7



https://forms.gle/DFM786dDjexZY8cd7

Your Questions



“What are some classes to look into if you
want to get into data science?”

A lot of data science is applied probability,
sfatistics, and linear algebra, so courses in
Those spaces are greal to look info, Check
ouf Math 51 and CS109 as launching points,
You might also want fo take a class in
optimization, like MS&E 1,




“Why did you pick teaching over industry?”

By the fime I graduafed I had a mix of
experience with feaching, research, and
industry, 0f fthe three, feaching seemed fo
be the most fun, so 1 figured I'd give it a
Try knowing That the other options were
always there if 1 changed my mind. Turns
oul, a decade later, I1's still vemarkably
rewarding and fulfilling, so I'm sfill here:




“Did you minor in anything, and would you
recommend doing so?”

I did a math minor. It was definitely not something 1'd
planned from the start - in my junior year I realized 1 was
close to having all the requirements and just needed fo fake a
couple more classes,

I definitely recommend exploring a bunch ot different areas to
see whal you're inferested in, Whether To do a minor or not is
largely a question about whether reaching that goal intrinsically
means something to you and whether you're inferested in filling
out the requirements, There are lots of ofher ways to explore
fwo areas (major/coterm, major/minor, and even major/*I
took a bunch ot classes in this are because that’'s something
thal appealed to me”),




Back to CS103!



Special Types of Functions



What does this

theorem mean?
: Why, intuitively,
should it be true?

What terms are

used in this proof? °
What do they

formally mean?

Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?









Undoing by Doing Again

 Some operations invert themselves. For example:

» Flipping a switch twice is the same as not flipping it at all.
 In first-order logic, ——A is equivalent to A.
* In algebra, -(-x) = x.

* In set theory, (A A B) AB = A. (Yes, really!)

* Operations with these properties are surprisingly
useful in CS theory and come up in a bunch of

contexts.
« Storing compressed approximations of sets (XOR filters).
 Theoretically unbreakable encryption (one-time pads).

 Transmitting a large file to multiple receivers (fountain
codes).



Involutions

* A function f: A - A from a set back to itself is
called an involution if the following first-
order logic statement is true about f:

Vx € A. f(f(x)) = x.

(“Applying f twice is equivalent to not
applying f at all.”)

* Involutions have lots of interesting properties.
Let’s explore them and see what we can find.



Involutions

 Which of the following are involutions?
e f:Z - Z defined as f(x) = x.
o f:7Z — Z defined as f(x) = -x.
 f: R - R defined as f(x) = /.
 f: N - N defined as follows:

_In+l1 1if n is even
fn) = n—1 if n is odd

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?
e f:Z - Z defined as f(x) = x.

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?
o f:7Z — Z defined as f(x) = x. Yep!

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

o f:7Z — Z defined as f(x) = -x.

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

o f:7Z — Z defined as f(x) = -x. Yep!

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

 f: R = R defined as f(x) = /.

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

 f: R = R defined as f(x) = '/x. Not a function!

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

 f: N - N defined as follows:

_In+l1 1if n is even
fn) = n—1 if n is odd

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?

 f: N - N defined as follows: Yep!

_In+l1 1if n is even
fn) = n—1 if n is odd

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?
o f:7Z — Z defined as f(x) = x. Yep!
o f:7Z — Z defined as f(x) = -x. Yep!
 f: R = R defined as f(x) = '/x. Not a function!
 f: N - N defined as follows: Yep!

_In+l1 1if n is even
fn) = n—1 if n is odd

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions, Visually

oo d o+ e
o v § + 6

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions, Visually
5
+

o

A function f: A — A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Proofs on Involutions



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:



Theorem: The function f: Z — Z defined as

_|n+1 1if n 1s even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean tor f fo be an
involution?




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean tor f fo be an
involution?

Vn € Z. f(f(n)) = n.




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean tor f fo be an
involution?

vn € Z. f(f(n)) = n.

Theretore, we'll have The reader
pick some n € Z, Then argue That

f(f(n)) =1,




Theorem: The function f: Z — Z defined as

_|n+1 1if n 1s even
fln) = n—1 if n is odd

is an involution.
Proof:

Vn € Z.

have the reader

pick some n€eZ




Theorem: The function f: Z — Z defined as

_|n+1 1if n 1s even
fln) = n—1 if n is odd

is an involution.
Proof:

flfn)) =n

argue That

fif(n)) = n




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean tor f fo be an
involution?

vn € Z. f(f(n)) = n.

Theretore, we'll have The reader
pick some n € Z, Then argue That

f(f(n)) =1,




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z.°



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

1S an involution.
Proof: Pick some n € Z. We need to show that f(f(n)) = n.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even.

Case 2: n is odd.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd.

Case 2: n is odd.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: n is odd.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: n is odd. Then f(n) = n - 1, which is even.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even. Then
we see that f(f(n)) =f(n-1)=n-1) + 1 = n.



Theorem: The function f: Z — Z defined as

n+1 1if n is even

fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even. Then
we see that f(f(n)) =f(n-1)=n-1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show.



Theorem: The function f: Z — Z defined as

n+1 1if n is even

fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even. Then
we see that f(f(n)) =f(n-1)=n-1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. W



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even. Then
we see that f(f(n)) =f(n-1)=n-1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we

need to show. . .
- This proot contains no

first—order logic syntax
(quantifiers, connectives, efc,).
It's writfen in plain English,
just as usual,







To prove that
this is true...




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.



Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

What does it mean tor f fo be an involution?

Vn € N. f(f(n)) = n.
What is the negation ot this statement?

—=Vn € N. f(f(n)) = n

in € N. = (f(f(n)) = n)
dn € N. f(f(n)) # n

Theretore, we need o pick some concrete
choice ot n such that fifin)) = n.




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

idn € N.

pick some concrete

choice ot n




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

ff(n)) # n

such That f(f(n)) # n




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

What does i mean for f fo be an involution?
vn € N. f(f(n)) = n.
What is the negation ot this statement?

—-Vn € N. f(f(n)) =n

dn € N. = (f(f(n)) = n)
dn € N. f(f(n)) # n

Theretfore, we need to pick some concrete
choice ot n such that f(f(n)) = n.




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

Proof: We need to show that there is some n € N where

ff(n)) = n.
Pick n = 2. Then
f(fn)) = f(f(2))
= f(4)
= 10,
which means that f(f(n)) # 2, as required. N



Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

Proof: We need to show that there is some n € N where

f(f(n)) = n.
Pick n = 2. Then
f(fn)) = f(f(2))
= f(4)
= 10,
which means that f(f(n)) # 2, as required. N

This proot contains no
first—order logic syntax
(quantifiers, connectives, efc,).
It's writfen in plain English,
just as usual,




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

— A Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.
HX. A Then prove that A is true for
that specific choice of x.

— A Simplify the negation, then
consult this table on the result.




Another Class of Functions



#oE T+ P Q +O+X

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
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Mercury
Earth

—» Mars

/

/ \ —Uranus
/ \ — Neptune

—»Saturn
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Injective Functions

A function f: A = B is called injective (or one-to-one) if
the following statement is true about f:

Va: € A. Vaz € A. (a1 # az - f(a1) # f(az))
(“If the inputs are different, the outputs are different.”)

The following first-order definition is equivalent (why?)
and is often useful in proofs.

Va: € A. Vaz € A. (f(air) = f(az) - a1 = a2)
(“If the outputs are the same, the inputs are the same.”)
A function with this property is called an injection.

How does this compare to our second rule for functions?



Injections

« Let Dbe the set of all CS103 students.
Which of the following are injective?
* f: — N where f(x) is x’s Stanford ID number.

« f: — ,where is the set of all countries
and f(x) is x s country of birth.

o f: — ,where is the set of all given
(first) names where f(x) is x’s given (first)
name.

A function f: A - B is injective if either statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

e f: — N where f(x) is x’s Stanford ID number.

A function f: A - B is injective if either statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

« f: — ,where is the set of all countries
and f(x) is x s country of birth.

A function f: A - B is injective if either statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

o f: — ,where is the set of all given
(first) names where f(x) is x’s given (first)
name.

A function f: A - B is injective if either statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

« Let Dbe the set of all CS103 students.
Which of the following are injective?
* f: — N where f(x) is x’s Stanford ID number.

« f: — ,where is the set of all countries
and f(x) is x s country of birth.

o f: — ,where is the set of all given
(first) names where f(x) is x’s given (first)
name.

A function f: A - B is injective if either statement is true:

Vxi1 € A. Vx2 € A. (x1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.
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Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:
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Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the tunction f o be
injective?




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean tor the ftunction f to be
injective?

Vm € N. Vnz2 € N. ( f(m1) = f(n2) - n1 = n2)
Vni € N.Vnz € N. (n1 # nz2 = f(ni) # f(n2) )




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the tunction f o be
injective?

Vm € N. Vnz2 € N. ( f(m1) = f(n2) - n1 = n2)




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the tunction f o be
injective?

Vm € N. Vnz2 € N. ( f(m1) = f(n2) - n1 = n2)

Theretore, we'll pick arbifrary ni, nz €N,
assume fln1) = flnz), then prove that n: = n2,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

Vni € N. Vn2 € N.

pick arbifrary ni, n2 € N,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

f(m) = f(n2) -

assume f(m) S f(nz),




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

- N1 = N2

then prove thal ni = n2,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(n1) = f(nz2), we see that
2n1 + 7 =2n2 + 7.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 =2n2 + 7.
This in turn means that

2n1 = 2n2



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 =2n2 + 7.
This in turn means that

2n1 = 2no2,

SO N1 = N2, as required.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 =2n2 + 7.
This in turn means that

2n1 = 2no2,

SO N1 = n2, as required. N

Good exercise: Repeat this
proot using the ofher
definition of injectivity:




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.

Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We

will prove that n1 = na.

Since f(n1) = f(nz2), we see that

2ni1 + 7 =2n2 + 7.

This in turn means that
2n1 = 2no2,

SO N1 = n2, as required. N

This proot contains
no first—order logic
synfax (quantifiers,
connectives, etc,), I1’s
writfen in plain English,
jusT as usual,




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.
HX. A Then prove that A is true for
that specific choice of x.

—_ A Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.
HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A - B prove B is true.

— A Simplify the negation, then
consult this table on the result.




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

What does it mean for ¥ to be injective?

Vx1 € Z. Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
What is the negafion of this statement?

=Vx1 € Z. Vxz2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. °Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ix2 € Z. 7 (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. (x1 # x2 A = (f(x1) # f(x2)))
dx1 € Z. Ax2 € Z. (x1 # x2 A f(x1) = f(x2))

Therefore, we need fo find x1, x2 € Z such that x1 # x2, but fix1) = fixz).
Can we do that?




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

dx1 € Z. Ax2 € Z.

we need o find xi, x2 € Z




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

(x1 # x2 A f(x1) = f(x2))
such That x1 # x2, bul fix1) = fixz)




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

What does it mean for ¥ to be injective?

Vx1 € Z. Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
What is the negafion of this statement?

=Vx1 € Z. Vxz2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. °Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ix2 € Z. 7 (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. (x1 # x2 A = (f(x1) # f(x2)))
dx1 € Z. Ax2 € Z. (x1 # x2 A f(x1) = f(x2))

Therefore, we need fo find x1, x2 € Z such that x1 # x2, but fix1) = fixz).
Can we do that?




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x: and xz
such that x1 # x2, but f(x1) = f(x2).



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x: and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1

and

fix) =f1)=1*=1



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1

and

fix2) = (1) = 1* =1,

so f(x1) = f(xz2) even though x1 # x2, as required.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1

and

fix2) = (1) = 1* =1,

so f(x1) = f(xz2) even though x1 # x2, as required. W



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) =(-1)*=1

and

This proot contains
fix2) =f(1) =1*4 no first—order logic
synfax (quantifiers,
connectives, etc,), I1’s
writfen in plain English,
just as usual,

so f(x1) = f(xz2) even though x1 # xz




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.
HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A - B prove B is true.

— A Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Have the reader pick an

VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A - B prove B is true.

A N B Prove A. Then prove B.

Either prove —A — B or

A V B prove =B - A,

(Why does this work?)

A e B Prove A - B and B - A.

— A Simplify the negation, then
consult this table on the result.




Another Class of Functions



Lassen Peak

Mt. Shasta California
Crater Lake
Mt. McLoughlin
Mt. Hood

Mt. St. Helens

Mt. Baker

Mt. Rainier » : 3



Surjective Functions

« A function f: A - B is called surjective (or

onto) if this first-order logic statement is true
about f:

Vb e B.3da€A.f(a)=b

(“For every output, there's an
input that produces it.”)

* A function with this property is called a
surjection.

« How does this compare to our first rule of
functions?



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:



Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean tor f fo be surjective?
VveR.IXER. f(X) =y

Theretore, we'll choose an arbitrary y € R,

Then prove that there is some x € R where
fx) = y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean tor f fo be surjective?
VyeR. Idx € R. f(x) =y

Thevetore, we'll choose an arbitrary y € R,

then prove that there is some x € R where
fix) =y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean tor f fo be surjective?
Vye R.AXx € R. f(x) =y

Theretore, we'll choose an arbifrary y € R,

Then prove that there is some x € R wheve
fx) = y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean tor f fo be surjective?
VyeR.Ixe R. f(x) =y

Theretore, we'll choose an arbifrary y € R,

then prove that There is some x € R where
fx) = y.




Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Letx =y/ 2.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fx) =fy/2)



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fx) =fly/2)=2y/?2



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fx)=fly/2)=2y/2=y.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that

fx)=fly/2)=2y/2=y.
So f(x) = y, as required.



Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that

fx)=fy/2)=2y/2=y.
So f(x) = y, as required. N

This proot contains
no first—order logic
synfax (quantifiers,
connectives, efc,), It's
writfen in plain English,
just as usual,




Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

What does it mean for g to be surjective?

Vn € N. dm € N. g(m) = n

What is fthe negation ot the above sfatement?

=Vn € N. 3m € N. g(m) = n
dn € N. =dm € N. g(m) = n
dn € N. Vm € N. g(m) # n

Theretore, we need to find a natural number n where,
regardless of which m we pick, we have g(m) # n,




Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof:



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137.

Our overall goal is To prove

dn € N. Vm € N. g(m) # n.

We just made our choice ot n.
Theretfore, we need 1o prove

Vm € N. g(m) # n.

We'll therefore pick an arbitrary
m € N, then prove that g(m) # n,




Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.

Notice that g(m) = 2m is even, while 137 is odd.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.

Notice that g(m) = 2m is even, while 137 is odd.
Theretfore, we have g(m) # 137, as required.



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) # 137, as required. W



Surjective Functions

Theorem: Let g : N - N be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m € N. We
need to show that g(m) # n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) # 137/, as required. W

This proot contains
no first—order logic
synfax (quantifiers,
connectives, efc,), It's
writfen in plain English,
just as usual,




To prove that
this is true...

Have the reader pick an

VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A - B prove B is true.

A N B Prove A. Then prove B.

Either prove —A — B or

A V B prove =B - A,

(Why does this work?)

A e B Prove A - B and B - A.

— A Simplify the negation, then
consult this table on the result.




Recap tfrom Today

* A function takes in an element of a
domain and maps it to an element of a
codomain. Functions must be
deterministic.

* Definitions are often given in first-order
logic, and the structure of a first-order logic
statement dictates the structure of a proof.

 Involutions, injections, and surjections
are specific classes of functions that have
nice properties.



Next Time

o First-Order Assumptions

 The difference between assuming something
is true and proving something is true.

 Connecting Function Types

* Involutions, injections, and surjections are
related to one another. How?

« Function Composition

* Sequencing functions together.
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