Functions

Part Two



Outline for Today

* Recap from Last Time

« Where are we, again?
A Proof About Birds

* Trust me, it’s relevant.
« Assuming vs Proving

« Two different roles to watch for.
 Connecting Function Types

* Relating the topics from last time.
 Function Composition

* Sequencing functions together.



Recap from Last Time



Domains and Codomains

* Every function f has two sets associated with it: its

domain and its codomain.

* A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the

codomain.

« We write f: A = B to indicate that fis a function
whose domain is A and whose codomain is B.

The function
must be defined
for each element

of its domain.

Domain

()

()

()

Codomain

The output of the
function must
always be in the
codomain, but
not all elements
of the codomain
need to be

producable.




Involutions

« A function f: A = A from a set back to itself
is called an involution if the tfollowing
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.

(“Applying f twice is equivalent to not
applying f at all.”)

 For example, f: R = R defined as f(x) = -x
i1s an involution.



Injective Functions

* A function f: A — B is called injective (or one-to-one)
if different inputs always map to different outputs.

« A function with this property is called an injection.

 Formally, f: A - B is an injection if this FOL statement
1S true:

Vai € A. Vaz € A. (a1 # az - f(a1) # f(az))
(“If the inputs are different, the outputs are different”)
 Equivalently:
Vai € A. Vaz € A. (f(a1) = f(az) - a1 = az)

(“If the outputs are the same, the inputs are the same”)



Surjective Functions

* A function f: A — B is called surjective (or
onto) if each element of the codomain is
“covered” by at least one element of the domain.

« A function with this property is called a
surjection.

 Formally, f: A - B is a surjection if this FOL
statement is true:

VbeB.da€A.f(a) =b

(“For every possible output, there's at least one
possible input that produces it”)



To prove that
this is true...

Have the reader pick an

VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A - B prove B is true.

A N B Prove A. Then prove B.

Either prove —A — B or

A V B prove =B - A,

(Why does this work?)

A e B Prove A - B and B - A.

— A Simplify the negation, then
consult this table on the result.




New Stuff!



A Proof About Birds



Theorem: It all birds can fly,
then all herons can fly.



Theorem: It all birds can fly, then all herons
can fly.

Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

translate the theorem into first-order logic.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N— — N =

ki ¥

All birds All herons
can fly can fly




A — B Assume A is true, then

prove B is true.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ Y

All birds All herons
can fly can fly




Theorem: It all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ ¥

All birds All herons
can fly can fly




Theorem: It all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

1. Consider an arbitrary bird b.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly. | and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example! |

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

2. Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ ¥

All birds All herons
can fly can fly




Theorem: It all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h

can fly.

N e’

(Vb. (Bird(b) —» CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

N

¥ ¥

All birds All herons
can fly can fly




Theorem: It all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h

can fly.

(Vb. (Bird(b) —» CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

N e’

N

¥ ¥

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

* In the context of a proof, you will need to
assume some statements and prove others.

 Here, we assumed all birds can fly.
 Here, we proved all herons can fly.

« Statements behave differently based on
whether you're assuming or proving them.

(Vb. (Bird(b) —» CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

N N e’

¥ ¥

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

* To prove the universally-quantified statement
Vx. P(x)

we introduce a new variable x representing some
arbitrarily-chosen value.

 Then, we prove that P(x) is true for that variable x.

* That’s why we introduced a variable h in this proof
representing a heron.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ Y

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

 I[f we assume the statement
Vx. P(x)
we do not introduce a variable x.

« Rather, if we find a relevant value z somewhere else in
the prootf, we can conclude that P(z) is true.

 That’s why we didn’t introduce a variable b in our
proof, and why we concluded that h, our heron, can fly.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ Y

We never introduce a We introduce a variable h
variable b. almost immediately.




To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

Introduce a variable
x into your proof that
has property A.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

Assume A. Then assume B.

AV B

Either prove —A — B or
prove =B — A.
(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Ao B

Prove A - B and B - A.

Assume A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Connecting Function Types



Types of Functions

» Last time, we saw three special types of
functions:

 involutions, functions that undo themselves;

* injections, tunctions where different inputs
go to different outputs; and

* surjections, functions that cover their whole
codomain.

* Question: How do these three classes of
functions relate to one another?



Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. ff(x)) =x) —» (VbeA.Ja€eA.fla)=Db)

¥ ¥

fis an fis
involution. surjective.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. ffX)) =x) - (Vb €eA.3a€A.fla) =Db)

Y i

Assume this. Prove this.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

N

¥ Y

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx € A. f(f(¥)) = x)

T

Assume this.

Since we're assuming this, we

aren’t going fo pick a specific
choice ot x right now, Instead,
we're going To keep an eye
out for something to
apply this fact 1o,

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vb € A.Ja € A. fla) = b)

We've said that we need
To prove this
sfatement, How do we

do that?

T

Prove this.

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



There’s a universal .
. Prove this.
guantifier up front,
Since we're proving
This, we’ll pick an
arbifrary b € A, Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Now, we hif an
existential quantifier.
Since we're proving this,
we need fo find a choice
of a € A where fhis
is True,

da € A. f(a) = b

- >

Prove this.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show. B

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A,
if f1s an involution, then fis injective.



(Vx€A. f(f(x)) =x) = (Var € A. Va2 € A. (a1 # az — f(a1) # f(az))

) 4 — e

¥ il

fis an fis
involution. injective.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Vx€A. f(f(x)) =x) = (Var € A. Va2 € A. (a1 # az — f(a1) # f(az))

N g

i ¥

Assume Prove
this. this.

(Vb. (Bird(b) — CanFly(b))) — (Vh. (Heron(h) —» CanFly(h)))

¥ Y

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Vx € A. f(f(x)) = x)

T

Assume
this.

Since we're assuming this, we

aren’t going to pick a specific
choice of x right now, Instead,
we're going 1o keep an eye
out for something fo
apply this fact 1o,

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Var € A.Vaz2 €A. (a1 # az - f(a1) # f(az))

N g

T

We need to prove this part. Prove
What does that mean? this

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Vai €A.Vaz €A.

Since we're proving something |
universally—quantified, we’ll Prove
pick some values arbitrarily, this.
Proof Outline

1. Assume fis an involution.
2. Pick arbitrary a1, az € A.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



ai # az - f(ai) # f(az)

We now need fo prove this
implication, Bul we know
how To do fhatr We assume
the antecedent and prove
The consequent,

Prove
this.

Proof Outline

. Assume f'is an involution.
. Pick arbitrary ai, az € A such
that a1 # a.

. Prove f(ai) # f(a2).

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Proof Outline

1. Assume f'is an involution.

2. Pick arbitrary ai, az € A such
that a1 # a-.

3. Prove f(ai1) # f(az).

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f : A —- A that’s an
involution. We will prove that fis injective. To do
so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(a-2).

We’ll proceed by contradiction. Suppose that

flai) = f(az). This means f(f(a1)) = f(f(az)), which in
turn tells us a1 = az because fis an involution. But
that’s impossible, since a: # a-.

We’ve reached a contradiction, so our assumption
was wrong. Therefore,
we see that f(ai) # f(az),

r ired. 1. Assume fis an involution.
as requ ed - 2. Pick arbitrary ai, az € A such

that a1 # ao.
. Prove f(a1) # f(a2).

Proof Outline




Time-Out for Announcements!



STANFORD
WICS

with Prof. Chris Piech

=

TUESDAY, OCT 12TH, 2021
-

4:00 - 4:45PM PST
‘ RSVP: BIT.LY/CHRISCOFFEECHAT



Gradescope Tagging

 When you upload a PDF to Gradescope, please make
sure to tag the pages that have your problem answers
on them.

* The altruistic reason: if you don’t do this, the TAs have
to do it for you, and across 170 submissions that adds
up to hours of extra work.

* The selfish reason: if you don’t tag the page containing
a problem, Gradescope marks it as though you didn’t
submit it, and the TAs might give you no points because
they thought you didn’t submit anything.

* You can tag pages after you submit, so if you submit
and then realize you forgot to tag things you can always
go back and fix it.



Partner Searches

* Looking for a problem set partner? Feel
free to post on EdStem to let people
know you're looking.

* Use the “Partners” tag so people can
filter down to posts on that topic.



Problem Set One Graded

* Your wonderful TAs have finished
grading Problem Set One.

* Grades and feedback are up on the
Gradescope.

* Solutions are available online on the
course website (visit the page for PS1 to
get the link).

 Regrades will open up this Friday at
noon and close next Wednesday at noon.



75% Percentile: 71 / 79
50t Percentile: 66 / 79

Problem Set One Graded
25" Percentile: 62 / 79

M o &P & & S\ > e A

/ / / /7 /7 / / /7 /

Pro tips when reading a grading distribution:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.




Problem Set One Graded

‘areal jobr Look over
your feedback tor some
Tips on how fo tweak
things for next time,*




Problem Set One Graded

>

Y

*“You're almost there! Review
the teedback on your
submission and see what 1o
focus on for next fime,”




Problem Set One Graded

& S

/7 /

S ¥

“You're on the right Track, but there
are some areas where you need fo
improve, Review your feedback and ask
us questions when you have Them,”




Problem Set One Graded

E=0B
/b:'\ /63\ /6363 /ODQ

‘Looks like something hasn't gquife clicked yet,
Get in Touch with us and stop by office hours
fo get some exfra feedback and advice,
Dont get discouraged - you can do this:*




What Not to Think

« “Well, I guess I'm just not good at math.”

« For most of you, this is your first time doing any rigorous
proof-based math.

 Don’t judge your future performance based on a single
data point.

 Life advice: think about download times.
» Life advice: have a growth mindset!

 “Hey, I did above the median. That’s good enough.”

« Unless you literally earned every single point on this
problem set - which no one did - there’s some area
where the course staff thinks you can improve. Take the
time to see what that is.



Your Questions



“Who is the gnarliest person you ever met
during your time at Stanford and how do
you handle impostor syndrome/feeling
intimidated when you meet gnarly people?”

1, Don't mistake falent and experience,
2. Don't confuse unions and infersections,
3, Remember you're always growing.,




Back to CS103!



Function Composition



f : People - Places g : Places - Prices

» Cupertino, CA ~

San Francisco ~_

Redding, CA

Utqgiagvik, AK

Palo Alto, CA

People Places Prices
h : People - Prices

h(x) = g(f(x))



Function Composition

 Suppose that we have two functions

f:A->Bandg:B-C.

* Notice that the codomain of fis the

domain of g. This means that we can use

outputs from f as inputs to g.

-

fx)
-~ f

g(f(X))>




Function Composition

 Suppose that we have two functions f: A - B
and g : B - C.

« The composition of f and g, denoted g ° f, is a
function where

The name of the function is g - f.
e gof:A-C,and When we apply it to an input x,

we write (g ° f)(x). I don't know
* (g ° H(x) = g(fix)). why, but that's what we do.
* A few things to notice:

 The domain of g - fis the domain of f. Its codomain is
the codomain of g.

 Even though the composition is written g - f, when
evaluating (g ° f)(x), the function f is evaluated first.



Properties of Composition



Theorem: If f: A —» B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.



Organizing Our Thoughts



Theorem: If f : A - B is an injection and
g : B —» C is an injection, then the function

gef:A - Cisan injection.

What We’re Assuming

f:A - Bis an injection.

Vx eA.Vy€eEA. (x=2y—

)

fx) = fly)

g : B — C is an injection.

Vxe€B.VyeEB. (x#y—

)

gx) = g(y)

We've assuming These
universally—gquantified
statements, so we won't
infroduce any variables
for what's here,

What We Need to Prove

g ° fis an injection.

Vair € A. Va2 € A. (a1 # az —
| (g ° )la1) # (g ° Haz)

We need to prove
this universally—
guantified stafement,
So let’s infroduce
arbitrarily—chosen
values,




Theorem: If f : A - B is an injection and
g : B —» C is an injection, then the function
ge°f:A - Cis an injection.

What We’re Assuming

f:A - Bis an injection.

Vx EA.Vy€eEA. (x=2y—
| ) = fly)

g : B — C is an injection.

VxeB.VyeB. (x#y—
) gx) = g(y)

a1 € A is arbitrarily-chosen.

az € A is arbitrarily-chosen.

What We Need to Prove

g ° fis an injection.

Vair € A. Va2 € A. (a1 # az —
| (g ° )la1) # (g ° Haz)

We need to prove
this universally—
guantitied statement,
So let’s infroduce
arbitrarily—chosen
values,




Theorem: If f : A - B is an injection and
g : B —» C is an injection, then the function
ge°f:A - Cis an injection.

What We’re Assuming

f:A - Bis an injection.

Vx eA.Vy€eEA (x#y-
| fix) = fly)

g : B — C is an injection.

VxeB.VyeB. (xzy—
) gix) # gy)

ai € A is arbitrarily-chosen.

az € A is arbitrarily-chosen.

ai # dz

What We Need to Prove

g ° fis an injection.

(a1 # a2 —

| (g ° Nlax) = (g ° f(az)

Now we're looking at
an implication, Let’s
assume the anfecedent
and prove the consequent,




Theorem: If f : A - B is an injection and
g : B —» C is an injection, then the function
ge°f:A - Cis an injection.

What We’re Assuming

f:A - Bis an injection.

Vx EA.Vy€eEA. x=2y—
| f0) = fly)

g : B — C is an injection.

VxeB.VyeB. (x#y—
) gix) # gy)

a1 € A is arbitrarily-chosen.

az € A is arbitrarily-chosen.

a1 # dz

What We Need to Prove

g ° fis an injection.

(g ° Nlax) = (g ° f(az)

Let’s write this out
separafely and simplity
things a bif.




Theorem: If f : A - B is an injection and
g : B —» C is an injection, then the function
ge°f:A - Cis an injection.

What We’re Assuming

f:A - Bis an injection.

Vx EA.Vy€eEA. x=2y—

) ) # fy)

g : B — C is an injection.

VxeB.VyeB. (x#y—

) gx) # g(y)

a1 € A is arbitrarily-chosen.

az € A is arbitrarily-chosen.

a1 # dz

What We Need to Prove

g(flai)) # g(f(az))

S )z\(ﬂm»
on
- Ia>) g(f(a2))

A B C



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g - f: A - C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a1 # a2. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(flaz)).

Since fis injective and a: # a2, we see that f(ai1) # f(az).
Then, since g is injective and f(a:1) # f(az), we see that

gd(flai)) # g(f(az)), as required. W

fla) g(f(a1))

Great exercise: Repeat
this proof using the other
definition of injectivity,

@H
s




Theorem: If f : A - B is a surjection and
g : B = C is a surjection, then the function
ge°f:A - (Cis a surjection.



Theorem: If f : A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g~ f: A - Cis also
surjective. To do so, we will prove that for any ¢ € C, there

is some a € A such that (g ° f)(a) = c. Equivalently, we
will prove that for any ¢ € C, there is some a € A such that

gd(fla)) = c.

Consider any ¢ € C. Since g : B = C is surjective, there is
some b € B such that g(b) = ¢. Similarly, since f: A - B is
surjective, there is some a € A such that f(a) = b. Then

we see that

g(fl@) = g(b) = c, ]
which is what we needed to show.




Major Ideas From Today

« Statements behave differently based on whether
you'’re assuming or proving them.

 When you assume a universally-quantified
statement, initially, do nothing. Instead, keep an
eye out for a place to apply the statement more
specifically.

 When you prove a universally-quantified
statement, pick an arbitrary value and try to prove
it has the needed property.

* As always: try concrete examples, draw pictures,
etc. before you dive into writing a proof.



To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

Introduce a variable
x into your proof that
has property A.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

Assume A. Then assume B.

AV B

Either prove —A — B or
prove =B — A.
(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Ao B

Prove A - B and B - A.

Assume A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Next Time

 Cardinality Revisited

 Formalizing our definitions.
« The Nature of Infinity

* Infinity is more interesting than it looks!
« Cantor’s Theorem Revisited

 Formally proving a major result.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

