
  

Functions
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Proof About Birds
● Trust me, it’s relevant. 😃

● Assuming vs Proving
● Two different roles to watch for.

● Connecting Function Types
● Relating the topics from last time.

● Function Composition
● Sequencing functions together.



  

Recap from Last Time



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

● We write f : A → B to indicate that f is a function 
whose domain is A and whose codomain is B.

Domain Codomain

The function 
must be defined 
for each element 

of its domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
producable.



  

Involutions

● A function f : A → A from a set back to itself 
is called an involution if the following 
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not 

applying f at all.”)
● For example, f : ℝ → ℝ defined as f(x) = -x 

is an involution.



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) 
if different inputs always map to different outputs.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this FOL statement 

is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)



  

Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain is 
“covered” by at least one element of the domain.

● A function with this property is called a 
surjection.

● Formally, f : A → B is a surjection if this FOL 
statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

New Stuff!



  

A Proof About Birds



  

Theorem: If all birds can fly,
then all herons can fly.



  

Theorem: If all birds can fly, then all herons
can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

 translate the theorem into first-order logic.



  

To prove that
this is true…

∀x. A

∃x. A

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

A → B Assume A is true, then
prove B is true.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the 
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.



  

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the 
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.



  

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a 
bird, b can fly. [ and now we’re stuck! we 
are interested in herons, but b might not 
be one. It could be a hummingbird, for 
example! ]

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary citril c. We will 
show that c can fly. To do so, note that 
since c is a citril we know c is a bird. 
Therefore, by our earlier assumption, c 
can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the 
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.



  

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will 
show that h can fly. To do so, note that 
since h is a heron we know h is a bird. 
Therefore, by our earlier assumption, h 
can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will 
show that h can fly. To do so, note that 
since h is a heron we know h is a bird. 
Therefore, by our earlier assumption, h 
can fly. ■

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● In the context of a proof, you will need to 
assume some statements and prove others.
● Here, we assumed all birds can fly.
● Here, we proved all herons can fly.

● Statements behave differently based on 
whether you’re assuming or proving them.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● To prove the universally-quantified statement

∀x. P(x)

we introduce a new variable x representing some 
arbitrarily-chosen value.

● Then, we prove that P(x) is true for that variable x.
● That’s why we introduced a variable h in this proof 

representing a heron.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● If we assume the statement

∀x. P(x)

we do not introduce a variable x.
● Rather, if we find a relevant value z somewhere else in 

the proof, we can conclude that P(z) is true.
● That’s why we didn’t introduce a variable b in our 

proof, and why we concluded that h, our heron, can fly.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Connecting Function Types



  

Types of Functions

● Last time, we saw three special types of 
functions:
● involutions, functions that undo themselves;
● injections, functions where different inputs 

go to different outputs; and
● surjections, functions that cover their whole 

codomain.
● Question: How do these three classes of 

functions relate to one another?



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

f is an
involution.

f is
surjective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Assume this. Prove this.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Since we’re assuming this, we
aren’t going to pick a specific
choice of x right now. Instead,
we’re going to keep an eye

out for something to
apply this fact to.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.We’ve said that we need
to prove this

statement. How do we
do that?

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.
There’s a universal
quantifier up front.
Since we’re proving
this, we’ll pick an
arbitrary b  ∈ A. Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.Now, we hit an
existential quantifier.

Since we’re proving this,
we need to find a choice

of a  ∈ A where this
is true.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

꩜

+

☞
≈

⬠

b

f(b)   a

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A, if f is an
involution, then f is surjective.

Proof: Pick any involution f : A → A. We will prove
that f is surjective. To do so, pick an arbitrary
b ∈ A. We need to show that there is an a ∈ A
where f(a) = b.

Specifically, pick a = f(b). This means that
f(a) = f(f(b)), and since f is an involution we know 
that f(f(b)) = b. Putting this together, we see that 
f(a) = b, which is what we needed to show. ■

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

f is an
involution.

f is
injective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Assume this. Prove this.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

Since we’re assuming this, we
aren’t going to pick a specific
choice of x right now. Instead,
we’re going to keep an eye

out for something to
apply this fact to.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

We need to prove this part.
What does that mean?



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A.such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

Since we’re proving something
universally-quantified, we’ll
pick some values arbitrarily.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

We now need to prove this
implication. But we know

how to do that! We assume
the antecedent and prove

the consequent.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

꩜

+

☞
≈

⬠

a₁

a₂

?

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).



  

Theorem: For any function f : A → A, if f is an
involution, then f is injective.

Proof: Consider any function f : A → A that’s an
involution. We will prove that f is injective. To do
so, choose any a₁, a₂ ∈ A where a₁ ≠ a₂. We need
to show that f(a₁) ≠ f(a₂).

We’ll proceed by contradiction. Suppose that
f(a₁) = f(a₂). This means f(f(a₁)) = f(f(a₂)), which in 
turn tells us a₁ = a₂ because f is an involution. But 
that’s impossible, since a₁ ≠ a₂.

We’ve reached a contradiction, so our assumption 
was wrong. Therefore,
we see that f(a₁) ≠ f(a₂),
as required. ■

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).



  

Time-Out for Announcements!



  



  

Gradescope Tagging

● When you upload a PDF to Gradescope, please make 
sure to tag the pages that have your problem answers 
on them.

● The altruistic reason: if you don’t do this, the TAs have 
to do it for you, and across 170 submissions that adds 
up to hours of extra work.

● The selfish reason: if you don’t tag the page containing 
a problem, Gradescope marks it as though you didn’t 
submit it, and the TAs might give you no points because 
they thought you didn’t submit anything.

● You can tag pages after you submit, so if you submit 
and then realize you forgot to tag things you can always 
go back and fix it. 😃



  

Partner Searches

● Looking for a problem set partner? Feel 
free to post on EdStem to let people 
know you’re looking.

● Use the “Partners” tag so people can 
filter down to posts on that topic.



  

Problem Set One Graded

● Your wonderful TAs have finished 
grading Problem Set One.

● Grades and feedback are up on the 
Gradescope.

● Solutions are available online on the 
course website (visit the page for PS1 to 
get the link).

● Regrades will open up this Friday at 
noon and close next Wednesday at noon.
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9

Problem Set One Graded

75th Percentile: 71 / 79
50th Percentile: 66 / 79
25th Percentile: 62 / 79

Pro tips when reading a grading distribution:
 

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.
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Problem Set One Graded

75th Percentile: 71 / 79
50th Percentile: 66 / 79
25th Percentile: 62 / 79

“Great job! Look over 
your feedback for some 
tips on how to tweak 
things for next time.”
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Problem Set One Graded

75th Percentile: 71 / 79
50th Percentile: 66 / 79
25th Percentile: 62 / 79

“You’re almost there! Review 
the feedback on your 

submission and see what to 
focus on for next time.”
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75th Percentile: 71 / 79
50th Percentile: 66 / 79
25th Percentile: 62 / 79

“You’re on the right track, but there 
are some areas where you need to 

improve. Review your feedback and ask 
us questions when you have them.”
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75th Percentile: 71 / 79
50th Percentile: 66 / 79
25th Percentile: 62 / 79

“Looks like something hasn’t quite clicked yet. 
Get in touch with us and stop by office hours 

to get some extra feedback and advice. 
Don’t get discouraged – you can do this!”



  

What Not to Think

● “Well, I guess I’m just not good at math.”
● For most of you, this is your first time doing any rigorous 

proof-based math.
● Don’t judge your future performance based on a single 

data point.
● Life advice: think about download times.
● Life advice: have a growth mindset!

● “Hey, I did above the median. That’s good enough.”
● Unless you literally earned every single point on this 

problem set – which no one did – there’s some area 
where the course staff thinks you can improve. Take the 
time to see what that is.



  

Your Questions



  

“Who is the gnarliest person you ever met 
during your time at Stanford and how do 

you handle impostor syndrome/feeling 
intimidated when you meet gnarly people?”

1. Don’t mistake talent and experience.
2. Don’t confuse unions and intersections.
3. Remember you’re always growing.



  

Back to CS103!



  

Function Composition



  
People Places Prices

Keith

Meredith

Siyan

Grant

Cupertino, CA

San Francisco

Redding, CA

Utqiagvik, AK

Far Too Much

A King's Ransom

A Modest Amount

More Than
You’d Expect

Drew
Palo Alto, CA

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



  

Function Composition

● Suppose that we have two functions 
f : A → B and g : B → C.

● Notice that the codomain of f is the 
domain of g. This means that we can use 
outputs from f as inputs to g.

f g
f(x)

 
x
 

g(f(x))
 



  

Function Composition

● Suppose that we have two functions f : A → B 
and g : B → C.

● The composition of f and g, denoted g ∘ f, is a 
function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is 

the codomain of g.
● Even though the composition is written g ∘ f, when 

evaluating (g ∘ f)(x), the function f is evaluated first.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



  

Properties of Composition



  

Theorem: If f : A → B is an injection and 
g : B → C is an injection, then the function 

g ∘ f : A → C is an injection.



  

Organizing Our Thoughts



  

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

We’re assuming these
universally-quantified

statements, so we won’t
introduce any variables

for what’s here.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.



  

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.



  

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

Now we’re looking at
an implication. Let’s

assume the antecedent
and prove the consequent.

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.

a₁ ≠ a₂



  

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.

a₁ ≠ a₂

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

Let’s write this out
separately and simplify

things a bit.



  

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.

a₁ ≠ a₂

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

g(f(a₁)) ≠ g(f(a₂))

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, consider any a₁, a₂ ∈ A where a₁ ≠ a₂. We will
prove that (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need to
show that g(f(a₁)) ≠ g(f(a₂)).

Since f is injective and a₁ ≠ a₂, we see that f(a₁) ≠ f(a₂). 
Then, since g is injective and f(a₁) ≠ f(a₂), we see that
g(f(a₁)) ≠ g(f(a₂)), as required. ■

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))

Great exercise: Repeat 
this proof using the other 
definition of injectivity.



  

Theorem: If f : A → B is a surjection and 
g : B → C is a surjection, then the function 

g ∘ f : A → C is a surjection.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. Then
we see that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

A B C

c

ba



  

Major Ideas From Today

● Statements behave differently based on whether 
you’re assuming or proving them.

● When you assume a universally-quantified 
statement, initially, do nothing. Instead, keep an 
eye out for a place to apply the statement more 
specifically.

● When you prove a universally-quantified 
statement, pick an arbitrary value and try to prove 
it has the needed property.

● As always: try concrete examples, draw pictures, 
etc. before you dive into writing a proof.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Next Time

● Cardinality Revisited
● Formalizing our definitions.

● The Nature of Infinity
● Infinity is more interesting than it looks!

● Cantor’s Theorem Revisited
● Formally proving a major result.
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