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Outline for Today

● Bijections
● A key and important class of functions.

● Cardinality, Formally
● What does it mean for two sets to have the 

same size?
● Cantor’s Theorem, Formally

● Proving, indeed, that infinity is not infinity is 
not infinity.



  

Recap from Last Time



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

● We write f : A → B to indicate that f is a function 
whose domain is A and whose codomain is B.

Domain Codomain

The function 
must be defined 
for each element 

of its domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
producable.



  

Function Composition

● If f : A → B and g : B → C are functions, 
the composition of f and g, denoted 
g ∘ f, is a function
● whose domain is A,
● whose codomain is C, and
● which is evaluated as (g ∘ f)(x) = g(f(x)).



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
different inputs always map to different outputs.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this FOL statement is 

true:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)

● Theorem: The composition of two injections is an injection.



  

Surjective Functions

● A function f : A → B is called surjective (or onto) if 
each element of the codomain is “covered” by at 
least one element of the domain.

● A function with this property is called a surjection.
● Formally, f : A → B is a surjection if this FOL 

statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)

● Theorem: The composition of two surjections is a 
surjection.



  

New Stuff!



  

Bijections



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?
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Bijections

● A bijection is a function that is both 
injective and surjective.

● Intuitively, if f : A → B is a bijection, then 
f represents a way of pairing off elements 
of A and elements of B.

꩜

⬠

☞

爱

树

家



  

Bijections

● Which of the following are bijections?
● f : ℝ → ℝ defined as f(x) = x. Yep!
● f : ℤ → ℝ defined as f(x) = x. Nope!
● f : ℝ → ℝ defined as f(x) = 2x + 1. Yep!
● f : ℤ → ℤ defined as f(x) = 2x + 1. Nope!

A bijection is a function that is
both injective and surjective.



  

Cardinality Revisited



  

Cardinality

● Recall (from our first lecture!) that the 
cardinality of a set is the number of elements it 
contains.

● If S is a set, we denote its cardinality by |S|.
● For finite sets, cardinalities are natural numbers:

● |{1, 2, 3}| = 3
● |{100, 200}| = 2

● For infinite sets, we introduced infinite 
cardinals to denote the size of sets:

|ℕ| = ℵ₀    



  

Defining Cardinality

● It is difficult to give a rigorous definition of 
what cardinalities actually are.
● What is 4? What is ₀?ℵ
● (Take Math 161 for an answer!)

● Instead, we’ll define cardinality as a 
relation between two sets rather than an 
absolute quantity.

● Intuition: Two sets have the same 
cardinality if there’s a way to pair off their 
elements.



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

, , ,

, ,,
Not 

injective.
Not 

surjective.



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

, , ,

, ,,



  

Fun with Cardinality



  

Terminology Refresher

● Let a and b be real numbers where a ≤ b.
● The notation [a, b] denotes the set of all 

real numbers between a and b, inclusive.

[a, b] = { x ∈ ℝ | a ≤ x ≤ b }
● The notation (a, b) denotes the set of all 

real numbers between a and b, exclusive.

(a, b) = { x ∈ ℝ | a < x < b }



  

Consider the sets [0, 1] and [0, 2].

How do their cardinalities compare?

★



  

0

2

0

1

f : [0, 1] → [0, 2]
f(x) = 2x



  

Theorem: |[0, 1]| = |[0, 2]|

Proof: Consider the function f : [0, 1] → [0, 2] defined as f(x) = 2x.
We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any 
x ∈ [0, 1]. This means that 0 ≤ x ≤ 1, so we know that 0 ≤ 2x ≤ 2. 
Consequently, we see that 0 ≤ f(x) ≤ 2, so f(x) ∈ [0, 2].

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ [0, 1] where 
f(x₁) = f(x₂). We will show that x₁ = x₂. To see this, notice that 
since f(x₁) = f(x₂), we see that 2x₁ = 2x₂, which in turn tells us 
that x₁ = x₂, as required.

Finally, we will show that f is surjective. To do so, consider any 
y ∈ [0, 2]. We’ll show that there is some x ∈ [0, 1] where f(x) = y.

Let x = y/2. Since y ∈ [0, 2], we know 0 ≤ y ≤ 2, and therefore that 
0 ≤ y/2 ≤ 1. We picked x = y/2, so we know that 0 ≤ x ≤ 1, which in 
turn means x ∈ [0, 1]. Moreover, notice that

f(x) = 2x = 2(y/₂) = y,

so f(x) = y, as required. ■



  

Theorem: |[0, 1]| = |[0, 2]|

Proof: Consider the function f : [0, 1] → [0, 2] defined as f(x) = 2x.
We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any 
x ∈ [0, 1]. This means that 0 ≤ x ≤ 1, so we know that 0 ≤ 2x ≤ 2. 
Consequently, we see that 0 ≤ f(x) ≤ 2, so f(x) ∈ [0, 2].

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ [0, 1] where 
f(x₁) = f(x₂). We will show that x₁ = x₂. To see this, notice that 
since f(x₁) = f(x₂), we see that 2x₁ = 2x₂, which in turn tells us 
that x₁ = x₂, as required.

Finally, we will show that f is surjective. To do so, consider any 
y ∈ [0, 2]. We’ll show that there is some x ∈ [0, 1] where f(x) = y.

Let x = y/2. Since y ∈ [0, 2], we know 0 ≤ y ≤ 2, and therefore that 
0 ≤ y/2 ≤ 1. We picked x = y/2, so we know that 0 ≤ x ≤ 1, which in 
turn means x ∈ [0, 1]. Moreover, notice that

f(x) = 2x = 2(y/₂) = y,

so f(x) = y, as required. ■

When defining something we claim is a 
function, the convention is to prove 
that it obeys the domain/codomain 

rules. For whatever reason, there isn’t 
a convention of showing that it’s 
deterministic. Ah, tradition. 😃



  

0

k
(for some k > 0)

0

1

f : [0, 1] → [0, k]
f(x) = kx

Cardinality (how many points 
there are) is different than 
mass (how much those points 
weigh). Look into measure 
theory if to learn more!



  

And one more example, just for funzies.



  

Put a Ring On It

0

f : (-π/2, π/2) → ℝ
f(x) = tan x

 

|(-π/2, π/2)| = |ℝ|

+π/2-π/2



  

Some Properties of Cardinality



  

Theorem: For any set A, we have |A| = |A|.

Proof: Consider any set A, and let f : A → A be the function
defined as f(x) = x. We will prove that f is a bijection.

First, we’ll show that f is a well-defined function. To see this, 
note that for any x ∈ A, we have f(x) = x ∈ A, as needed.

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ A where 
f(x₁) = f(x₂). We need to show that x₁ = x₂. Since f(x₁) = f(x₂), 
we see by definition of f that x₁ = x₂, as required.

Finally, we’ll show that f is surjective. Consider any y ∈ A. We 
will prove that there is some x ∈ A where f(x) = y. Pick x = y. 
Then x ∈ A (since y ∈ A) and f(x) = x = y, as required. ■



  

Theorem: If A, B, and C are sets where |A| = |B| and |B| = |C|,
then |A| = |C|.

Proof: Consider any sets A, B, and C where |A| = |B| and |B| = |C|.
We need to prove that |A| = |C|. To do so, we need to show that
there is a bijection from A to C.

Since |A| = |B|, we know that there is a some bijection f : A → B. 
Similarly, since |B| = |C| we know that there is at least one 
bijection g : B → C.

Consider the function g ∘ f : A → C. Since g and f are bijections 
and the composition of two bijections is a bijection, we see that 
g ∘ f is a bijection from A to C. Thus |A| = |C|, as required. ■



  

Great exercise: Prove that if A and B are 
sets where |A| = |B|, then |B| = |A|.



  

Time-Out for Announcements!



  

Problem Set Three

● Problem Set Two was due today at 
2:30PM.

● Problem Set Three goes out today. It’s 
due next Friday at 2:30PM.
● Play around with functions, set cardinality, 

and the nature of infinity!
● As always, ping us if you need help 

working on this one: post on EdStem or 
stop by office hours.



  

Midterm Exam Logistics

● Our first 48-hour take-home midterm exam runs from 
2:30PM next Friday, October 15th to 2:30PM next Sunday, 
October 17th.

● The exam format is similar to the problem sets: the 
questions will be online, you’ll download any relevant 
starter files, and submit everything through GradeScope.

● You have the full 48 hours to work on the midterm. It’s 
designed to take about three hours to finish.

● You’re responsible for Lectures 00 – 05 and topics from 
PS1 – PS2. Later lectures (functions onward) and problem 
sets (PS3) won’t be tested here. Exam problems may build 
on the written or coding components from the problem sets.

● The exam is open-book, open-note, and closed-other-
humans. You must not communicate with other humans 
about the exam.



  

Midterm Exam

● We want you to do well on this exam. 
We're not trying to weed out weak students. 
We're not trying to enforce a curve where 
there isn't one. We want you to show what 
you've learned up to this point so that you get 
a sense for where you stand and where you 
can improve.

● The purpose of this midterm is to give you a 
chance to show what you've learned in the 
past few weeks. It is not designed to assess 
your “mathematical potential” or “innate 
mathematical ability.”



  

Preparing for the Exam



  

Philosophy
Class

Dance
Class

CS103

Learn by doing. Learn by reading.

CS106A



  

Building a
Rocket

Learning to
Speak

CS103

Rapid iteration.
Constant, small feedback.

Slower iteration.
Infrequent, large feedback.

CS106A

You can always run 
your code and just 
see what happens!

Checking a proof 
requires human 

expertise.



  

Extra Practice Problems

● Up on the course website, you’ll find Extra 
Practice Problems 1, a set of eighteen 
practice problems on the topics covered 
by the upcoming midterm.

● Many of these are old midterm questions. 
Some are just really fun problems we 
thought you might enjoy working through.

● Take the time to work through some of 
these problems. This is, perhaps, the best 
way to study.



  

Doing Practice Problems

● As you work through practice problems, 
keep other humans in the loop!

● Ask your problem set partner to review 
your answers and offer feedback – and 
volunteer to do the same!

● Post your answers as private questions 
on EdStem and ask for TA feedback!

● Feedback loops are key to improving!



  

Preparing for the Exam

● We’ve posted a “Preparing for the Exam” 
page on the course website with full 
details and logistics.

● It also includes advice from former 
CS103 students about how to do well 
here.

● Check it out – there are tons of goodies 
there!



  

Your Questions



  

“I don't here a lot of talk about the CS graphics 
track, especially when compared to tracks like AI, 

information, etc. What are your thoughts on it? 
What can you do with it?”

Graphics is a very cool track to pursue. 
You can work with what we think of as 

traditional graphics (better techniques for 
rendering and displaying things on screen), 
but also things like photography, artwork, 
and physics simulation. The snow from 

“Frozen” was developed here, for example. 
The graphics group has something like five 
academy awards and one Turing award.



  

Back to CS103!



  

Unequal Cardinalities

● Recall: |A| = |B| if the following statement is true:

There exists a bijection f : A → B   
● What does it mean for |A| ≠ |B| to be true?

Every function f : A → B is not a bijection.
● This is a strong statement! To prove |A| ≠ |B|, we need to show that 

no possible function from A to B can be injective and surjective.

, ,

, ,,



  

Cantor’s Theorem Revisited



  

Cantor’s Theorem

● In our very first lecture, we sketched out 
a proof of Cantor’s theorem, which says 
that

If S is a set, then |S| < | (℘ S)|.
● That proof was visual and pretty hand-

wavy. Let’s see if we can go back and 
formalize it!



  

Where We’re Going

● Today, we’re going to formally prove the 
following result:

If S is a set, then |S| ≠ | (℘ S)|.
● We’ve released an online Guide to Cantor’s 

Theorem, which will go into way more depth 
than what we’re going to see here.

● The goal for today will be to see how to start 
with our picture and turn it into something 
rigorous.

● On the problem set, you’ll explore the proof in 
more depth and see some other applications.



  

The Roadmap

● We’re going to prove this statement:

If S is a set, then |S| ≠ | (℘ S)|.
● Here’s how this will work:

● Pick an arbitrary set S.
● Pick an arbitrary function f : S → (℘ S).
● Show that f is not surjective using a diagonal 

argument.
● Conclude that there are no bijections from S to (℘ S).
● Conclude that |S| ≠ | (℘ S)|.
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The Diagonal Set

● For any set S and function f : S → (℘ S), we 
can define a set D as follows:

D = { x ∈ S | x ∉ f(x) }

(“The set of all elements x where x is
not an element of the set f(x).”)

● This is a formalization of the set we found in 
the previous picture.

● Using this choice of D, we can formally 
prove that no function f : S → (℘ S) is a 
bijection.



  

  Theorem: If S is a set, then |S| ≠ | (℘ S)|.
   

  Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by showing that
there are no bijections from S to (℘ S). To do so, choose an arbitrary function
f : S → (℘ S). We will prove that f is not surjective.

   

Starting with f, we define the set
   

        D = { x ∈ S | x ∉ f(x) }. (1)
   

We will show that there is no y ∈ S such that f(y) = D. To do so, we proceed
by contradiction. Suppose that there is some y ∈ S such that f(y) = D. By
the definition of D, we know that

   

    y ∈ D if and only if y ∉ f(y). (2)
   

By assumption, f(y) = D. Combined with (2), this tells us
   

    y ∈ D if and only if y ∉ D. (3)
   

This is impossible. We have reached a contradiction, so our assumption must
have been wrong. Therefore, there is no y ∈ S such that f(y) = D, so f is not
surjective. This means that f is not a bijection, and since our choice of f
was arbitrary, we conclude that there are no bijections between S and (℘ S).
Thus |S| ≠ | (℘ S)|, as required. ■



  

The Big Recap

● We define equal cardinality in terms of bijections 
between sets.

● Lots of different sets of infinite size have the same 
cardinality.

● Cardinality acts like an equivalence relation – but 
only because we can prove specific properties of 
how it behaves by relying on properties of 
function.

● Cantor’s theorem can be formalized in terms of 
surjectivity.



  

Next Time

● Graphs
● A ubiquitous, expressive, and flexible 

abstraction!
● Properties of Graphs

● Building high-level structures out of lower-
level ones!
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