
  

Graph Theory
Part Two



  

Outline for Today

● Walks, Paths, and Reachability
● Walking around a graph.

● Graph Complements
● Flipping what’s in a graph.

● The Teleported Train Problem
● A very exciting commute.

● The CBS Theorem
● Cardinality meets graph theory!



  

Recap from Last Time



  

Graphs and Digraphs

● A graph is a pair G = (V, E) of a set of 
nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs of nodes. For 

example, if {u, v} ∈ E, then there’s an edge 
from u to v.

● A digraph is a pair G = (V, E) of a set of 
nodes V and set of directed edges E.
● Each edge is represented as the ordered pair 

(u, v) indicating an edge from u to v.



  

New Stuff!



  

Walks, Paths, and Reachability
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Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're 

linked by an edge.
● Formally speaking, we say that two nodes 

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed 

graphs. We usually just say “there’s an edge 
from u to v” as a way of reading (u, v) ∈ E 
aloud.
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(This walk has 
length 10, but 
visits 11 cities.)
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after these road 
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to v.
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A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.
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Fun Facts

● Here’s a collection of useful facts about graphs that 
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is 

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s 

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V 

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if 

and only if G has exactly one connected component.
● Looking for more practice working with formal 

definitions? Prove these results!



  

Graph Complements



  

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

≈

⬠☜

꩜ ≈

⬠☜

꩜

Graph G Graph Gc



  

Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.



  

Proving a Disjunction

● We need to prove the statement

G is connected    ∨    Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove 

that Gc is connected.
● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
at least one of G and Gc is connected.
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Any two nodes in G in 
different CC’s of G 

become adjacent in Gc.

Any two nodes in G in 
the same CC can be 

“bridged” in Gc through 
a node in a different CC 

of G.



  

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■
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Time-Out for Announcements!



  

Problem Set Two Graded

● Your diligent and hardworking TAs have just 
finished grading PS2. Grades and feedback are 
now available on Gradescope.
● 75th Percentile: 69 / 74 (93%)
● 50th Percentile: 67 / 74 (91%)
● 25th Percentile: 61 / 74 (82%)

● As always, please review your feedback! 
Knowing where to improve is more important 
than just seeing a raw score.

● Did we make a mistake? Regrades will open up 
on Friday and are due by next Wednesday.



  

What’s On Deck

● The first midterm goes out on Friday at 2:30PM Pacific. 
It comes due on Sunday at 2:30PM Pacific.
● The exam must be completed individually.
● It’s open-book, open-note, and closed-other-humans.
● It covers PS1 – PS2 and L00 – L05. Functions and onward 

aren’t tested (yet).
● We will have class on Friday. We’re giving you next 

Monday off.
● PS4 will go out on Friday at 2:30PM as usual, with a due 

date of next Friday at 2:30PM as usual. It’s designed to 
be shorter than normal, since we don’t expect you to 
start working on it / look at it until Monday.



  

Preparing for the Exam

● The best way to prepare for the exam is to
● work on PS3, which covers proofs, first-order 

logic, and the like, and
● review your feedback on PS1 and PS2 so you 

know what to keep an eye out for as you 
complete PS3.

● If you want more targeted practice with any 
topics we’ve covered this quarter, there are 
eighteen extra practice problems available 
on the course website.

● Best of luck – you can do this!



  

Your Questions



  

“Advice for dealing with stress / burnout / exhaustion?” 
“Advice for time management and finding balance? Have 

felt overwhelmed with work recently and don't know 
how to catch up.”

For starters – I’m sorry to hear you’re feeling this. If you’d like to chat about 
anything, feel free to ping me.
 

What do you do to recharge? Some people I know like to meditate, others 
exercise, etc. Having tools like these you can deploy can make a world of 
difference. And make sure you’re doing proper biological care and maintenance. 
Are you eating enough? Sleeping enough? Getting proper exercise? If not, it is 
well worth doing so. It is easy to lose track of just how important these are.
 

Time management is a skill. If you’re overloaded, identify ways to reduce your 
commitments. That could be something like dropping a class, or it could mean 
taking on a less active role in a student group. It could also mean doing a 
passable job with something rather than knocking it out of the park.
 

And if you’ve done all this and you’re still feeling overwhelmed, reach out to 
someone who can give you personalized advice, whether that’s through informal 
mentorship channels or more structured counseling. It is perfectly normal to get 
help this way – that’s why these resources exist!



  

Back to CS103!



  

The Teleported Train Problem



  



  

A₁

These are teleporters.
Anything entering a
teleporter from the

left side emerges from
the right side of the
paired teleporter.

A₂



  

B₂A₁ A₂B₁



  

A₁ B₁ B₂A₂



  

A₁ B₁ B₂A₂



  

A₁ B₂A₂B₁



  

A₁ B₂A₂B₁

It took a while, but
eventually the train

reached the end of the
track.



  

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

Will the train reach 
the end of the 

track? Or will it get 
stuck in a loop?
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A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

The train gets trapped
if it starts here and
only moves right.



  

Can You Trap the Train?

● The train always drives to the right.
● The train starts just before the first teleporter.
● Teleporters always link in pairs.
● Teleporters can’t stack on top of one another.
● Teleporters can’t appear at or after the end point.
● You can use as many teleporters as you’d like.
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The Teleporter Digraph

● Each line of teleporters gives rise to a directed graph.
● Each node in the graph represents a segment.
● Each edge represents following a teleporter.

● That digraph consists of paths and cycles.
● Question: Why does the digraph look like this?
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The Teleporter Digraph

● In a directed graph, the indegree of a node is the 
number of edges entering that node. The outdegree 
of a node is the number of edges leaving that node.

● Notice anything about the indegrees and outdegrees 
of this digraph?
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The Teleporter Digraph

● Let G = (V, E) be a digraph where each node’s 
indegree is at most one and each node’s outdegree 
is at most one.

● Theorem: Any walk starting at a node of indegree 
zero is also a path.

This node now
has indegree two.
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zero is also a path.

The starting node
is supposed to have

indegree zero.
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Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a a repeated node. List the nodes in T, 
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just 
before revisiting a node. We also know that the next node in the 
walk (call it r) is a repeated node, with (vₖ, r) being a directed 
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption 
must have been wrong. Thus T is a path. ■
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start node has 
indegree zero.
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Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins 
before the first 

teleporter, so the 
start node has 
indegree zero.

Therefore, the 
walk we trace out 
is a path, and so 

it has to end 
somewhere.

The only node of 
outdegree zero is 
the one after the 
last teleporter, 

where the goal is.



  

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

Theorem: It is impossible to trap the train
if it starts before the first teleporter.



  

Theorem: It is not possible to trap the train in the Teleported Train Problem.

Proof: Consider any arrangement of teleporters. We will prove that the train
makes it to the end without getting stuck in a loop.

Divide the train track into segments denoting the ranges between two 
teleporters or between a teleporter and the start/end of the track. From 
these segments, construct a directed graph whose nodes are the 
segments and where there’s an edge from a segment S₁ to a segment S₂ 
if, upon reaching the end of segment S₁, the train teleports to the start of 
segment S₂.

We claim that every node in this graph has indegree at most one and 
outdegree at most one. To see this, pick any segment. If that segment 
begins with a teleporter, then it has one incoming edge that originates at 
the segment that ends with the paired teleporter. If that segment ends 
with a teleporter, then it has one outgoing edge to the start of the 
segment with the paired teleporter.

Now, consider the walk traced out by the train from the starting segment. 
That segment has indegree zero because it does not begin with a 
teleporter, so by our previous theorem this walk is a path. There are only 
finitely many segments and our path never revisits one, so eventually the 
path ends at a node with outdegree zero. The only node with this 
property is the end segment, so the train eventually reaches the end of 
the track. ■



  

The Cantor-Bernstein-Schroeder Theorem



  

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If |S| ≤ |T| and |T| ≤ |S|,

then |S| = |T|.

(This was first proven by Richard Dedekind.)



  

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If there is an injection

f : S → T and an injection g : T → S, then
there is a bijection h : S → T.
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Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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g(x) = ˣ/₂ + ¹/₄

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.

There’s a bijection between these 
sets – though finding a formula for 

one is hard enough to be an 
Optional Fun Problem. 😃



  

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.

f : ℕ → ℕ2

g : ℕ2 → ℕ

f(n) = (0, n)
g(m, n) = 2m · 3n

These functions are injective.
Challenge: Find a bijection h : ℕ → ℕ2.
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S

T
Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

Every node in this (possibly infinite) 
digraph has outdegree one and indegree 
at most one. Therefore, the digraph 
consists of a mix of paths and cycles.

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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S

T

For nodes within a cycle, define 
the bijection from S to T to be 

“follow the blue arrows.”

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

For nodes in a path starting at a 
red node, have the bijection from 
S to T be “follow the red arrows 

in reverse.”

Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  
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T

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

For nodes in any other path, have 
the bijection from S to T be 

“follow the blue arrows.”

Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

Recap for Today

● We can use walks and closed walks to travel around a graph. 
Walks and closed walks that don’t repeat nodes or edges are called 
paths and cycles, respectively.

● The complement of a graph is a graph formed by toggling which 
edges are included and which are excluded. At least one of a graph 
and its complement will always be connected.

● The indegree and outdegree of a node in a digraph are the 
number of edges entering or leaving the node, respectively.

● Digraphs where the indegree and outdegree of each node are at 
most one break apart into isolated paths and cycles.

● You can’t trap a train on a track with teleporters, unless there’s a 
teleporter behind the train. 😃

● The Cantor-Bernstein-Schroeder theorem about sets and set 
cardinality can be thought of as a theorem about graphs with low 
indegrees and outdegrees.



  

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

● A Little Movie Puzzle
● Who watched what?
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