

Graph Theory
Part Two

Outline for Today

● Walks, Paths, and Reachability
● Walking around a graph.

● Graph Complements
● Flipping what’s in a graph.

● The Teleported Train Problem
● A very exciting commute.

● The CBS Theorem
● Cardinality meets graph theory!

Recap from Last Time

Graphs and Digraphs

● A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs of nodes. For

example, if {u, v} ∈ E, then there’s an edge
from u to v.

● A digraph is a pair G = (V, E) of a set of
nodes V and set of directed edges E.
● Each edge is represented as the ordered pair

(u, v) indicating an edge from u to v.

New Stuff!

Walks, Paths, and Reachability

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

RATSAT

MAT

CAN

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're

linked by an edge.
● Formally speaking, we say that two nodes

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed

graphs. We usually just say “there’s an edge
from u to v” as a way of reading (u, v) ∈ E
aloud.

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

From

To

SLC

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SF Sac

Port

Sea

From

To

SF, Sac, Port, Sea

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SLCSF Sac

Port

Sea

From

To

SF, Sac, SLC, Port, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This walk has
length 10, but
visits 11 cities.)

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Mon

LV

Bar Flag

LA

SD Nog

Phoe

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sea, But, SLC, Port, Sea

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

(This closed walk
has length nine
and visits nine

different cities.)

From/To

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SF

SF

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

SF, Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

LA

SF, Sac, LA

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

SF, Sac, LA, Phoe

Port

Sea But

SLC

Mon

LV

Bar

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

Flag

SF, Sac, LA, Phoe, Flag

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

(A walk, not a
path.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

(This walk has
length six.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac

Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Sac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

(A closed
walk, not a
cycle.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

(This closed
walk has length

6.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

What is the length
of the longest

walk in this graph?
Path in this graph?

Closed walk?
Cycle?

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

(Barstow isn’t
reachable from SF
after these road

closures.)

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

(This graph is
not connected.)

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A connected component (or
CC) of G is a maximal set of
mutually reachable nodes.

Fun Facts

● Here’s a collection of useful facts about graphs that
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if

and only if G has exactly one connected component.
● Looking for more practice working with formal

definitions? Prove these results!

Graph Complements

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

≈

⬠☜

꩜ ≈

⬠☜

꩜

Graph G Graph Gc

Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.

Proving a Disjunction

● We need to prove the statement

G is connected ∨ Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove

that Gc is connected.
● We will therefore prove

G is not connected → Gc is connected.

For any graph G = (V, E),
at least one of G and Gc is connected.

Proving a Disjunction

● We need to prove the statement

G is connected ∨ Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove

that Gc is connected.
● We will therefore prove

G is not connected → Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

⬠☜

꩜ +

○△

★

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

☜

꩜ +

○

★

⬠ △

⬠

For any graph G = (V, E),
if G is not connected, then Gc is connected.

☜

꩜ +

○

★

△

≈

For any graph G = (V, E),
if G is not connected, then Gc is connected.

☜

꩜ +

○

★≈

⬠ △

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

⬠☜

꩜ +

○△

★

Any two nodes in G in
different CC’s of G

become adjacent in Gc.

Any two nodes in G in
the same CC can be

“bridged” in Gc through
a node in a different CC

of G.

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Time-Out for Announcements!

Problem Set Two Graded

● Your diligent and hardworking TAs have just
finished grading PS2. Grades and feedback are
now available on Gradescope.
● 75th Percentile: 69 / 74 (93%)
● 50th Percentile: 67 / 74 (91%)
● 25th Percentile: 61 / 74 (82%)

● As always, please review your feedback!
Knowing where to improve is more important
than just seeing a raw score.

● Did we make a mistake? Regrades will open up
on Friday and are due by next Wednesday.

What’s On Deck

● The first midterm goes out on Friday at 2:30PM Pacific.
It comes due on Sunday at 2:30PM Pacific.
● The exam must be completed individually.
● It’s open-book, open-note, and closed-other-humans.
● It covers PS1 – PS2 and L00 – L05. Functions and onward

aren’t tested (yet).
● We will have class on Friday. We’re giving you next

Monday off.
● PS4 will go out on Friday at 2:30PM as usual, with a due

date of next Friday at 2:30PM as usual. It’s designed to
be shorter than normal, since we don’t expect you to
start working on it / look at it until Monday.

Preparing for the Exam

● The best way to prepare for the exam is to
● work on PS3, which covers proofs, first-order

logic, and the like, and
● review your feedback on PS1 and PS2 so you

know what to keep an eye out for as you
complete PS3.

● If you want more targeted practice with any
topics we’ve covered this quarter, there are
eighteen extra practice problems available
on the course website.

● Best of luck – you can do this!

Your Questions

“Advice for dealing with stress / burnout / exhaustion?”
“Advice for time management and finding balance? Have

felt overwhelmed with work recently and don't know
how to catch up.”

For starters – I’m sorry to hear you’re feeling this. If you’d like to chat about
anything, feel free to ping me.

What do you do to recharge? Some people I know like to meditate, others
exercise, etc. Having tools like these you can deploy can make a world of
difference. And make sure you’re doing proper biological care and maintenance.
Are you eating enough? Sleeping enough? Getting proper exercise? If not, it is
well worth doing so. It is easy to lose track of just how important these are.

Time management is a skill. If you’re overloaded, identify ways to reduce your
commitments. That could be something like dropping a class, or it could mean
taking on a less active role in a student group. It could also mean doing a
passable job with something rather than knocking it out of the park.

And if you’ve done all this and you’re still feeling overwhelmed, reach out to
someone who can give you personalized advice, whether that’s through informal
mentorship channels or more structured counseling. It is perfectly normal to get
help this way – that’s why these resources exist!

Back to CS103!

The Teleported Train Problem

A₁

These are teleporters.
Anything entering a
teleporter from the

left side emerges from
the right side of the
paired teleporter.

A₂

B₂A₁ A₂B₁

A₁ B₁ B₂A₂

A₁ B₁ B₂A₂

A₁ B₂A₂B₁

A₁ B₂A₂B₁

It took a while, but
eventually the train

reached the end of the
track.

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

Will the train reach
the end of the

track? Or will it get
stuck in a loop?

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

The train gets trapped
if it starts here and
only moves right.

Can You Trap the Train?

● The train always drives to the right.
● The train starts just before the first teleporter.
● Teleporters always link in pairs.
● Teleporters can’t stack on top of one another.
● Teleporters can’t appear at or after the end point.
● You can use as many teleporters as you’d like.

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

s
A₁

A₁
C₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

s
A₁

A₁
C₁

C₁
B₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

A₂
D₁

D₁
B₂

B₂
D₂

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₁
E₂

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₁
B₁

B₁
E₁

E₂
C₂

C₂
A₂

D₁
B₂

B₂
D₂

A₂
D₁

D₂
f

s
A₁

E₁
E₂

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂E₂E₁s f

A₁
C₁

C₂
A₂

A₂
D₁

D₂
f

s
A₁

C₁
B₁

B₁
E₁

E₂
C₂

D₁
B₂

B₂
D₂

E₁
E₂

The Teleporter Digraph

● Each line of teleporters gives rise to a directed graph.
● Each node in the graph represents a segment.
● Each edge represents following a teleporter.

● That digraph consists of paths and cycles.
● Question: Why does the digraph look like this?

A₁
C₁

C₂
A₂

A₂
D₁

D₂
f

s
A₁

C₁
B₁

B₁
E₁

E₂
C₂

D₁
B₂

B₂
D₂

E₁
E₂

The Teleporter Digraph

● In a directed graph, the indegree of a node is the
number of edges entering that node. The outdegree
of a node is the number of edges leaving that node.

● Notice anything about the indegrees and outdegrees
of this digraph?

A₁
C₁

C₂
A₂

A₂
D₁

D₂
f

s
A₁

C₁
B₁

B₁
E₁

E₂
C₂

D₁
B₂

B₂
D₂

E₁
E₂

The Teleporter Digraph

● Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
is at most one.

● Theorem: Any walk starting at a node of indegree
zero is also a path.

This node now
has indegree two.

The Teleporter Digraph

● Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
is at most one.

● Theorem: Any walk starting at a node of indegree
zero is also a path.

The starting node
is supposed to have

indegree zero.

The Teleporter Digraph

● Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
is at most one.

● Theorem: Any walk starting at a node of indegree
zero is also a path.

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.

Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vₖ, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption
must have been wrong. Thus T is a path. ■

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins
before the first

teleporter, so the
start node has
indegree zero.

Therefore, the
walk we trace out
is a path, and so

it has to end
somewhere.

The only node of
outdegree zero is
the one after the
last teleporter,

where the goal is.

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

Theorem: It is impossible to trap the train
if it starts before the first teleporter.

Theorem: It is not possible to trap the train in the Teleported Train Problem.

Proof: Consider any arrangement of teleporters. We will prove that the train
makes it to the end without getting stuck in a loop.

Divide the train track into segments denoting the ranges between two
teleporters or between a teleporter and the start/end of the track. From
these segments, construct a directed graph whose nodes are the
segments and where there’s an edge from a segment S₁ to a segment S₂
if, upon reaching the end of segment S₁, the train teleports to the start of
segment S₂.

We claim that every node in this graph has indegree at most one and
outdegree at most one. To see this, pick any segment. If that segment
begins with a teleporter, then it has one incoming edge that originates at
the segment that ends with the paired teleporter. If that segment ends
with a teleporter, then it has one outgoing edge to the start of the
segment with the paired teleporter.

Now, consider the walk traced out by the train from the starting segment.
That segment has indegree zero because it does not begin with a
teleporter, so by our previous theorem this walk is a path. There are only
finitely many segments and our path never revisits one, so eventually the
path ends at a node with outdegree zero. The only node with this
property is the end segment, so the train eventually reaches the end of
the track. ■

The Cantor-Bernstein-Schroeder Theorem

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If |S| ≤ |T| and |T| ≤ |S|,

then |S| = |T|.

(This was first proven by Richard Dedekind.)

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If there is an injection

f : S → T and an injection g : T → S, then
there is a bijection h : S → T.

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

f(x) = ˣ/₂ + ¹/₄

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

g(x) = ˣ/₂ + ¹/₄

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

There’s a bijection between these
sets – though finding a formula for

one is hard enough to be an
Optional Fun Problem. 😃

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

f : ℕ → ℕ2

g : ℕ2 → ℕ

f(n) = (0, n)
g(m, n) = 2m · 3n

These functions are injective.
Challenge: Find a bijection h : ℕ → ℕ2.

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

S

T
Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

S

T
Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

S

T
Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

S

T
Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

Every node in this (possibly infinite)
digraph has outdegree one and indegree
at most one. Therefore, the digraph
consists of a mix of paths and cycles.

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

S

T

For nodes within a cycle, define
the bijection from S to T to be

“follow the blue arrows.”

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

For nodes in a path starting at a
red node, have the bijection from
S to T be “follow the red arrows

in reverse.”

Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

For nodes in any other path, have
the bijection from S to T be

“follow the blue arrows.”

Blue lines represent the injection f : S → T
 Red lines represent the injection g : T → S

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f : S → T and an
injection g : T → S, then there is a bijection h : S → T.

Recap for Today

● We can use walks and closed walks to travel around a graph.
Walks and closed walks that don’t repeat nodes or edges are called
paths and cycles, respectively.

● The complement of a graph is a graph formed by toggling which
edges are included and which are excluded. At least one of a graph
and its complement will always be connected.

● The indegree and outdegree of a node in a digraph are the
number of edges entering or leaving the node, respectively.

● Digraphs where the indegree and outdegree of each node are at
most one break apart into isolated paths and cycles.

● You can’t trap a train on a track with teleporters, unless there’s a
teleporter behind the train. 😃

● The Cantor-Bernstein-Schroeder theorem about sets and set
cardinality can be thought of as a theorem about graphs with low
indegrees and outdegrees.

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

● A Little Movie Puzzle
● Who watched what?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229

