Graph Theory

Part Two



Outline for Today

 Walks, Paths, and Reachability
 Walking around a graph.

 Graph Complements
* Flipping what'’s in a graph.

« The Teleported Train Problem
* A very exciting commute.

« The CBS Theorem
« Cardinality meets graph theory!



Recap from Last Time



Graphs and Digraphs

A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.

 Nodes can be anything.

 Edges are unordered pairs of nodes. For
example, if {u, v} € E, then there’s an edge
from u to v.

« Adigraph is a pair G = (V, E) of a set of
nodes V and set of directed edges E.

 Each edge is represented as the ordered pair
(u, v) indicating an edge from u to v.



New Stuff!



Walks, Paths, and Reachability



MAT

Two nodes are called adjacent if there is an edge
between them.




MAT

Two nodes are called adjacent if there is an edge
between them.




MAT

Two nodes are called adjacent if there is an edge
between them.




Two nodes are called adjacent if there is an edge
between them.



Using our Formalisms

 Let G = (V, E) be an (undirected) graph.

 Intuitively, two nodes are adjacent if they're
linked by an edge.

 Formally speaking, we say that two nodes
u, v € Vare adjacent it we have {u, v} € E.

 There isn’t an analogous notion for directed
graphs. We usually just say “there’s an edge
from u to v’ as a way of reading (u, v) € E
aloud.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

a) (b
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
iIsn-1.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
iIsn-1.
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Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

@—Gac SL9 The length of the walk vu, ..., va
isn-1.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va

isn-1.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)
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Sea But A walk in a graph G = (V, E) is
a sequence of one or more

nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
F; Port the sequence are adjacent
, Sac SI.C The length of the walk v1, ..., vn
isn-1.
@9 A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
G\D cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
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A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

- "y
&
' 4 “\
’ 1
" Flag
N S

A

CSum’
‘ SE Sac, LA, Phoe, Flag, Bar I




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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(A walk, not a
path,)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
iIsn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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Path in this graph?
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vu, ..., va
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.



Sea But A walk in a graph G = (V, E) is
a sequence of one or more

nodes vi, vz, Vs, ..., Va Such that
Port any two consecutive nodes in
the sequence are adjacent.

Sac SI.C A path in a graph is walk that
does not repeat any nodes.
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any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.




Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u

to v.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u
to v.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u
to v.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u
to v.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

(This graph 1s
not connected.)



A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u
to v.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.




Sea

Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u if there is a path from u
to v.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A connected component (or
CC) of G is a maximal set of

mutually reachable nodes.




Fun Facts

* Here’s a collection of useful facts about graphs that
you can take as a given.

« Theorem: If G = (V, E) is a graph and u, v € V, then there is
a path from u to v if and only if there’s a walk from u to v.

« Theorem: If G is a graph and C is a cycle in G, then C’s
length is at least three and C contains at least three nodes.

« Theorem: It G = (V, E) is a graph, then every node in V
belongs to exactly one connected component of G.

« Theorem: If G = (V, E) is a graph, then G is connected if
and only if G has exactly one connected component.

* Looking for more practice working with formal
definitions? Prove these results!



Graph Complements



Graph G Graph G¢

Let G = (V, E) be an undirected graph.
The complement of G is the graph G° = (V, E¢), where
Ece={{u,v}i|lueV,veV,u=#v,and {u, v} ¢ E }



Theorem: For any graph G = (V, E),
at least one of G and GF¢ is connected.



Proving a Disjunction

 We need to prove the statement
G is connected VvV G°is connected.
e Here’s a neat observation.

 [f G is connected, we’re done.

 Otherwise, G isn’t connected, and we have to prove
that G°¢ is connected.

 We will therefore prove
G is not connected - G¢is connected.

For any graph G = (V, E),
at least one of G and GF¢ is connected.



Proving a Disjunction

 We need to prove the statement
G is connected VvV G°is connected.
e Here’s a neat observation.

 [f G is connected, we’re done.

 Otherwise, G isn’t connected, and we have to prove
that G°¢ is connected.

 We will therefore prove
G is not connected - G¢is connected.

For any graph G = (V, E),
if G is not connected, then G¢ is connected.



For any graph G = (V, E),
if G 1is not connected, then G¢ is connected.



For any graph G = (V, E),
if G 1is not connected, then G¢ is connected.



For any graph G = (V, E),
if G is not connected, then G¢ is connected.



For any graph G = (V, E),
if G is not connected, then G¢ is connected.



“ Any two nodes in G in
& different CC’s of G
4 become adjacent in G°.

% @-......Q_ Any two nodes in G in

the same CC can be
“bridged” in G° through
a node in a different CC
of G.

For any graph G = (V, E),
if G is not connected, then G¢ is connected.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof:



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G° = (V, E°) is connected.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V. We need to show
that there is a path from u to v in G¢.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V. We need to show
that there is a path from u to v in G¢. We consider two cases:

Case 1: u and v are in different connected components of G.

Case 2: u and v are in the same connected component of G.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V. We need to show
that there is a path from u to v in G¢. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} € E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected

component of G.

Case 2: u and v are in the same connected component of G.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V. We need to show
that there is a path from u to v in G¢. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} € E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} € E¢, and so there
is a path (namely, u, v) from u to v in G¢.

Case 2: u and v are in the same connected component of G.



Theorem: If G = (V, E) is a graph, then at least one of G and G° is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that G¢ = (V, E°) is connected. To
do so, consider any two distinct nodes u, v € V. We need to show
that there is a path from u to v in G¢. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} € E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} € E¢, and so there
is a path (namely, u, v) from u to v in G¢.

Case 2: u and v are in the same connected component of G. Since
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Time-Out for Announcements!



Problem Set Two Graded

* Your diligent and hardworking TAs have just
finished grading PS2. Grades and feedback are
now available on Gradescope.

« 75" Percentile: 69 / 74 (93%)
50t Percentile: 67 / 74 (91%)
« 25" Percentile: 61 / 74 (82%)
* As always, please review your feedback!

Knowing where to improve is more important
than just seeing a raw score.

* Did we make a mistake? Regrades will open up
on Friday and are due by next Wednesday.



What’s On Deck

« The first midterm goes out on Friday at 2:30PM Pacific.
It comes due on Sunday at 2:30PM Pacific.

« The exam must be completed individually.
« It’s open-book, open-note, and closed-other-humans.

e It covers PS1 - PS2 and L.OO - LO5. Functions and onward
aren’t tested (yet).

 We will have class on Friday. We’re giving you next
Monday off.

« PS4 will go out on Friday at 2:30PM as usual, with a due
date of next Friday at 2:30PM as usual. It’s designed to
be shorter than normal, since we don’t expect you to
start working on it / look at it until Monday.



Preparing for the Exam

 The best way to prepare for the exam is to

 work on PS3, which covers proofs, first-order
logic, and the like, and

* review your feedback on PS1 and PS2 so you
know what to keep an eye out for as you
complete PS3.

 If you want more targeted practice with any
topics we’ve covered this quarter, there are
eighteen extra practice problems available
on the course website.

» Best of luck - you can do this!



Your Questions



“Advice for dealing with stress / burnout / exhaustion?”
“Advice for time management and finding balance? Have
felt overwhelmed with work recently and don't know
how to catch up.”

For starters — I'm sorry to hear youre feeling this, If you'd like fo chat about
anything, feel free 1o ping me.,

What do you do o recharge? Some people 1 know like to medifate, others
exercise, efc, Having fools like these wou can deploy can make a world of
difference, And make sure you'vre doing proper biological care and maintenance,
Are you ealing enough? Sleeping enough? Getfing proper exercise? 1t not, it is
well worth doing so. It is easy to lose track of just how important these are.

Time management is a skill, It you'vre overloaded, identity waus o reduce your
commitments, That could be something like dropping a class, or if could mean
Taking on a less active role in a student group. It could also mean doing a
passable job with something rather than knocking it out of the park,

And it youwve done all this and youvre still feeling overwhelmed, reach out 1o
someone who can give you personalized advice, whefher that's through informal
mentorship channels or more structured counseling, 1t is perfectly normal fo gef
help This way — that’s why these resources exist:




Back to CS103!



The Teleported Train Problem






A>

These are teleporters.
Anything entering a
teleporter from the

left side emerges from
the right side of the

paired teleporter.
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It took a while, but
eventually the train
reached the end of the
track.
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Ei C2 A2 D1 B2 D2

Will the frain reach
the end of the
track? Or will iT gef
sTuck in a loop?
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Can You Trap the Train?

* The train always drives to the right.

« The train starts just before the first teleporter.

» Teleporters always link in pairs.

» Teleporters can’t stack on top of one another.

« Teleporters can’t appear at or after the end point.
* You can use as many teleporters as you'd like.
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The Teleporter Digraph

 Each line of teleporters gives rise to a directed graph.

 Each node in the graph represents a segment.
 Each edge represents following a teleporter.

 That digraph consists of paths and cycles.
* Question: Why does the digraph look like this?

N

S A> Do Al C2
Al Dx f C1 4 A2
C1 \
/ B1
E> B>
C2 Do
o ) {
£, B D1



The Teleporter Digraph

* In a directed graph, the indegree of a node is the
number of edges entering that node. The outdegree
of a node is the number of edges leaving that node.

* Notice anything about the indegrees and outdegrees
of this digraph?

—
S A> Do Al C2
Aa Da f C1 4 A2
C1 \
/ B
E> B>
C2 Do
o ) {
E, B1 D1



The Teleporter Digraph

« Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
1S at most one.

« Theorem: Any walk starting at a node of indegree
zero 1s also a path.
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The Teleporter Digraph

Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
1S at most one.

Theorem: Any walk starting at a node of indegree
zero 1s also a path.
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The Teleporter Digraph

« Let G = (V, E) be a digraph where each node’s
indegree is at most one and each node’s outdegree
1S at most one.

« Theorem: Any walk starting at a node of indegree
zero 1s also a path.
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Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node vo of indegree zero. Then T is a path.



Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node vo of indegree zero. Then T is a path.

Proof:



Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node vo of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node.
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Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node vo of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the

nodes found this way as
Vo, Vi1, V2, V3, ..., Vk.

Nodes vo, v, ..., and vk are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vk, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1:1r = vo.

Case 2: r = v;forsomei # 0.



Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node vo of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T,
stopping just before we list the first repeated node. Label the

nodes found this way as
Vo, Vi1, V2, V3, ..., Vk.

Nodes vo, v, ..., and vk are distinct because we’ve stopped just
before revisiting a node. We also know that the next node in the
walk (call it r) is a repeated node, with (vk, r) being a directed
edge in E. We now ask: which earlier node is r equal to?

Case 1:r = vo. This means that (vk, vo) is a directed edge,
which is impossible because vo has indegree zero.

Case 2: r = v;forsomei # 0.



Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
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Theorem: It is not possible to trap the train in the Teleported Train Problem.

Proof: Consider any arrangement of teleporters. We will prove that the train
makes it to the end without getting stuck in a loop.

Divide the train track into segments denoting the ranges between two
teleporters or between a teleporter and the start/end of the track. From
these segments, construct a directed graph whose nodes are the
segments and where there’s an edge from a segment Si1 to a segment Sz
if, upon reaching the end of segment Si, the train teleports to the start of
segment Se.

We claim that every node in this graph has indegree at most one and
outdegree at most one. To see this, pick any segment. If that segment
begins with a teleporter, then it has one incoming edge that originates at
the segment that ends with the paired teleporter. If that segment ends
with a teleporter, then it has one outgoing edge to the start of the
segment with the paired teleporter.

Now, consider the walk traced out by the train from the starting segment.
That segment has indegree zero because it does not begin with a
teleporter, so by our previous theorem this walk is a path. There are only
finitely many segments and our path never revisits one, so eventually the
path ends at a node with outdegree zero. The only node with this
property is the end segment, so the train eventually reaches the end of
the track. W



The Cantor-Bernstein-Schroeder Theorem



Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If |S| = |T| and |T| = |S],
then |S| = |T].

(This was first proven by Richard Dedekind.)



Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If there is an injection
f:S - T and an injection g : T — S, then
there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —» T and an
injection g : T — S, then there is a bijection h : § - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —» T and an
injection g : T — S, then there is a bijection h : § - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.
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Theorem (Cantor-Bernstein-Schroeder): Let S
and T be sets. If there is an injection f: S —- T and an
injection g : T — S, then there is a bijection h : S - T.



Recap for Today

 We can use walks and closed walks to travel around a graph.
Walks and closed walks that don’t repeat nodes or edges are called
paths and cycles, respectively.

« The complement of a graph is a graph formed by toggling which
edges are included and which are excluded. At least one of a graph
and its complement will always be connected.

 The indegree and outdegree of a node in a digraph are the
number of edges entering or leaving the node, respectively.

« Digraphs where the indegree and outdegree of each node are at
most one break apart into isolated paths and cycles.

* You can’t trap a train on a track with teleporters, unless there’s a
teleporter behind the train.

 The Cantor-Bernstein-Schroeder theorem about sets and set
cardinality can be thought of as a theorem about graphs with low
indegrees and outdegrees.



Next Time

« The Pigeonhole Principle

* A simple, powertul, versatile theorem.
 Graph Theory Party Tricks

* Applying math to graphs of people!
A Little Movie Puzzle

« Who watched what?
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