Graph Theory

Part Three



Outline for Today

« The Pigeonhole Principle

* A simple yet surprisingly effective fact.
 Graph Theory Party Tricks

* Cool tricks to try at your next group meeting.
A Little Movie Puzzle

« Who watched what?



Recap from Last Time



Adjacency and Reachability

 Two nodes in a graph are called adjacent it
there's an edge between them.

 Two nodes in a graph are called reachable
if there's a path between them.




New Stuff!



The Pigeonhole Principle
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« Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.
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The Pigeonhole Principle

« Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.







Some Simple Applications

« Any group of 367 people must have a pair of
people that share a birthday.

* 306 possible birthdays (pigeonholes).
« 3067 people (pigeons).

 Two people in San Francisco have the exact
same number of hairs on their head.

 Maximum number of hairs ever found on a
human head is no greater than 500,000.

 There are over 800,000 people in San Francisco.



Theorem (The Pigeonhole Principle): It m
objects are distributed into n bins and m > n, then at
least one bin will contain at least two objects.

Let A and B be finite sets (sets whose cardinalities are natural
numbers) and assume |A| > |B|. How many of the following
statements are true?

(1) If f: A — B, then fis injective.

(2) If f: A - B, then fis not injective.
(3) If f: A - B, then fis surjective.

(4) If f: A - B, then fis not surjective.



Proving the Pigeonhole Principle



Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, ..., n and let x: denote the number of
objects in bin i. There are m objects in total, so we know that

m=X1+ X2 + ... + Xn.

Since each bin has at most one object in it, we know xi: < 1 for
each i. This means that

m=x1+x2+ ... + Xn
1 +14+...4+1 (ntimes)
n.
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This means that m < n, contradicting that m > n. We've
reached a contradiction, so our assumption must have been
wrong. Therefore, if m objects are distributed into n bins with
m > n, some bin must contain at least two objects.



Pigeonhole Principle Party Tricks












Degrees

* The degree of a node v in a graph is the
number of nodes that v is adjacent to.
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« Theorem: Every graph with at least two

nodes has at least two nodes with the same
degree.

 Equivalently: at any party with at least two
people, there are at least two people with the
same number of friends at the party.
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With n nodes, there
are n possible

degrees
(0,1,2,...,n-1)







Can both of
these buckets
be nonempty?
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.
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at least two nodes of the same degree.

Proof 1: Let G be a graph with n = 2 nodes. There are n

possible choices for the degrees of nodes in G, namely,
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We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n - 1: if there were such
nodes, then node u would be adjacent to no other nodes
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n = 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely O, 1, 2, ..., n - 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n - 1. (These can't
be the same node, since n = 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption
must have been wrong. Thus if G is a graph with at
least two nodes, G must have at least two nodes of the
same degree. B



The Generalized Pigeonhole Principle
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A More General Version

 The generalized pigeonhole principle says
that if you distribute m objects into n bins, then

["/n] means “™/n, rounded up.”
|™/n] means “"/», rounded down.”
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A More General Version

 The generalized pigeonhole principle says
that if you distribute m objects into n bins, then

["/n] means “™/n, rounded up.”
|™/n] means “"/», rounded down.”
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m=8,n=3

Thanks to Amy Liu for this awesome drawing!



Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least [™/n] objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least ™/» objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least [™/n] Objects.

To do this, we proceed by contradiction. Suppose that, for some m and
n, there is a way to distribute m objects into n bins such that each bin
contains fewer than "/» objects.

Number the bins 1, 2, 3, ..., n and let x: denote the number of objects
in bin i. Since there are m objects in total, we know that

m=Xx1 + X2 + ... + Xn.

Since each bin contains fewer than ™/» objects, we see that
xi < ™/n for each i. Therefore, we have that

X1 + X2 + ...+ Xn
my + ™M 4+ ...+ "n (n timeS)
m.

m

Al

But this means that m < m, which is impossible. We have reached a
contradiction, so our initial assumption must have been wrong.
Therefore, if m objects are distributed into n bins, some bin must
contain at least ["/»] objects. B



An Application: Friends and Strangers



Friends and Strangers

 Suppose you have a party of six people.
Each pair of people are either friends
(they know each other) or strangers (they
do not).

» Theorem: Any such party must have a
group of three mutual friends (three
people who all know one another) or three
mutual strangers (three people, none of
whom know any of the others).
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This graph is called
a s=cligue, by the

way,
















Friends and Strangers Restated

 From a graph-theoretic perspective, the
Theorem on Friends and Strangers can
be restated as follows:

Theorem: Any 6-clique whose edges are
colored red and blue contains a red
triangle or a blue triangle (or both).

« How can we prove this?





















Observation 1: If
we pick any node in
the graph, that node
will have at least
[5/2] = 3 edges of
the same color

incident to it.
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Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: We need to show that the colored 6-clique contains a
red triangle or a blue triangle.

Let x be any node in the 6-clique. It is incident to five
edges and there are two possible colors for those edges.
Theretore, by the generalized pigeonhole principle, at
least [°/2] = 3 of those edges must be the same color.
Without loss of generality, assume those edges are blue.

Letr, s, and t be three of the nodes adjacent to node x
along a blue edge. If any of the edges {r, s}, {r, t}, or {s,
t} are blue, then one of those edges plus the two edges
connecting back to node x form a blue triangle. Otherwise,
all three of those edges are red, and they form a red
triangle. Overall, this gives a red triangle or a blue
triangle, as required. W



Ramsey Theory

 The theorem we just proved is a special case of a
broader result.

« Theorem (Ramsey’s Theorem): For any natural
number n, there is a smallest natural number
R(n) such that if the edges of an R(n)-clique are
colored red or blue, the resulting graph will
contain either a red n-clique or a blue n-clique.

* Our proof was that R(3) < 6.

A more philosophical take on this theorem: true
disorder is impossible at a large scale, since no
matter how you organize things, you're
guaranteed to find some interesting substructure.



Time-Out for Announcements!



Midterm 1

* Our first midterm exam went out today at 2:30PM
Pacific. It’s due Sunday at 2:30PM Pacific.

 The exam is open-book, open-note, open-internet,
and closed-other-humans.

* You can ask us clarifying questions about what the

problems are asking on EdStem, as long as you post
privately.

* You cannot communicate with other humans about
this exam, search online for answers to the questions,
or solicit answers from other people.

* You can do this. Best of luck on the exam!



Problem Sets

* Problem Set Three was due today at
2:30PM.

* Problem Set Four goes out today. It’s due
next Friday at 2:30PM.

» It’s all about graphs and graph theory, and
you’'ll see some really cool results!

* Because the midterm goes out today and is
due Sunday, we don’t expect you to look at
this one until Monday. We’'ve made it shorter
than the previous problem sets.



Your Questions



“What is a class that you struggled the
most with at Stanford and how did you pull
it through? (ignore if you never struggled
with classes)”

oddly enough, that would be Cs103: Prefty much everything in that class was totally new
fo me, I was surrounded by a bunch of people who had way more experience than 1 did,
and I hadn't yef learned how fo take advanfage of the resources given fo me,

In vefrospect, I was approaching the class the wrong way., I was Trying o solve
everything on my own and was spending hours upon hours turning over the problems in my
head without drawing pictures, writing things down, or even cowsidering going fo office
hours, I thought that was how you were ‘supposed” to be doing things, I also had
atrocious proof sfule (e.g. proofs that spanned three handwritfen pages) because, at the
fime, no one was pointing out to me that I wasn't supposed to do that,

Now having taught CS103 for a decade, it's amazing To see how much I learned in fhat
class, 1 definitely didnt get much of what we covered, and it fook a few years for me
fo veally get how to fhink about some of the topics. 1 still wonder how much more 1

would have learned if I hadn't been siloed off from other students and if I had been
more sfrafegic about asking for big—picture advice,




“Favorite albums of all time?”

In unsorted order:

‘Nurfure” by Porter Robinson., It's a reflection on hifting a creafive/artistic
block and trying to figure out how to find the motivation to move forward.

‘Litfle Big* and ‘Liftle Big 1I: Dreams of a Mechanical Man“ by Aaron Parks,
Exceplional modern jazz that gefs betfer affer every listen,

‘Live al the Quick” by Béla Fleck and the Flecktones, Fantastic live album showcasing
a mix of performers having a great fime.

“Random Access Memories® by Daft Punk, Daft Punk put so much effort into getting
everything in this album fo sound just right over a huge range of styles,

“City Folk” by Tames Farm, Stellar jazz album thal never gets old.

‘MTV Unplugged in New York” by Nirvana, There’s a reason this group had such an
outsized impact on the direction of popular music,

“The Rise and Fall of Ziggy Stardust and the Spiders from Mars” by David Bowie,
Starfs strong and never lets up.

“Remain in Light” by Talking Heads, This album doesnt sound like anything else I've
ever heard and has many standout tracks,

‘Kind of Blue* by Miles Davis, Wow, what an album, Everything here ages well,




Back to CS103!



A Little Math Puzzle



“In a group of n > 0 people ...

* 90% of those peop]
- 80% of those peop!
- 70% of those peop!

e en
e en

- 60% of those peop!

e enj

e enj

joyed Get Out,
joyed Lady Bird,

oyed Arrival, and
oyed Zootopia.

No one enjoyed all four movies. How many people
enjoyed at least one of Get Out and Arrival?”



https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat

Other Pigeonhole-Type Results



If m objects are distributed into n
boxes, then [condition] holds.



If m objects are distributed into n
boxes, then some box is loaded to at
least the average ™/n, and some box is
loaded to at most the average ™/n.



If m objects are distributed into n
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Theorem: It m objects are distributed into

n bins, then there is a bin containing more

than ™/» objects if and only if there is a bin
containing fewer than ™/» objects.
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Without loss of
generality, assume that bin 1 has fewer than ™/» objects

This magic phrase means ‘we gel to pick
how we've labeling things anyway, so it
it doesnt work out, just relabel things.,*
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Insight 1: Model movie
preferences as balls
(movies) in bins (people).

“In a group of n > 0 people ...

- 90% of those people enjoyed Get Out,

- 80% of those people enjoyed Lady Bird,

- 70% of those people enjoyed Arrival, and
- 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people
enjoyed at least one of Get Out and Arrival?”

Insight 2: There
are n tofal bins, one
for each person,

Linda Anabelle

Amy

Victoria



* 90% of those peop]
- 80% of those peop]
- 70% of those peop]

“In a group of n > 0 people ...

e enjoyed Get Out,
e enjoyed Lady Bird,
e enjoyed Arrival, and

- 60% of those peop]

enjoyed at least one of

e enjoyed Zootopia.

No one enjoyed all four movies. How many people

Get Out and Arrival?”

On+ .8n+ .7n + .6n

= 3n

Insight 3: There are 3n
balls being distributed
into n bins,

Insight 4: The average
number of balls in each

bin 1s 3,




“In a group of n > 0 people ...

- 90% of those people enjoyed Get Out,

- 80% of those people enjoyed Lady Bird,

- 70% of those people enjoyed Arrival, and
- 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people
enjoyed at least one of Get Out and Arrival?”

Insight 5: No one Insight 6: .. so no one
enjoyed more Than three enjoyed tewer Than
movies.. three movies ..

Insight 7: .. so
everyone enjoyed exactly
three movies.




- 90% of t]
- 80% of t]
- 70% of tl

nose peop.
nose peop.
nose peop.

+ 60% of t

“In a group of n > 0 people ...

e enjoyed Get Out,
e enjoyed Lady Bird,
e enjoyed Arrival, and

n0Se peop.

Insight &: You

have to

enjoy at least one of
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Going Further

« The pigeonhole principle can be used to prove a ton of
amazing theorems. Here’s a sampler:

There is always a way to fairly split rent among multiple people,
even if different people want different rooms. (Sperner’s lemma)

You and a friend can climb any mountain from two different
starting points so that the two of you maintain the same altitude
at each point in time. (Mountain-climbing theorem)

If you model coffee in a cup as a collection of infinitely many
points and then stir the coffee, some point is always where it
initially started. (Brower’s fixed-point theorem)

A complex process that doesn’t parallelize well must contain a
large serial subprocess. (Mirksy’s theorem)

Any positive integer n has a nonzero multiple that can be written
purely using the digits 1 and 0. (Doesn’t have a name, but still
cool!)



More to Explore

* Interested in more about graphs and the pigeonhole
principle? Check out...

* ... Math 107 (Graph Theory), a deep dive into graph theory.

e ... Math 108 (Combinatorics), which explores a bunch of
results pertaining to graphs and counting things.

* ...CS161 (Algorithms), which explores algorithms for
computing important properties of graphs.

¢ ... CS224W (Deep Learning on Graphs), which uses a mix
of mathematical and statistical techniques to explore
graphs.

 Happy to chat about this in person if you'd like.



Next Time

* No class on Monday - take a break!
- Then, when we get back:

« Mathematical Induction
- Reasoning about stepwise processes!
 Applications of Induction

- To numbers!
- To anticounterteiting!
- To puzzles!
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