
  

Mathematical Induction
Part Two



  

Outline for Today

● Variations on Induction
● Starting later, taking different step sizes, and 

more!
● “Build Up” versus “Build Down”

● An inductive nuance that follows from our 
general proofwriting principles.

● Complete Induction
● When one assumption isn’t enough!



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■
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New Stuff!



  

Variations on Induction: Starting Later



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square
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Subdividing a Square



  

Subdividing a Square



  

Subdividing a Square

These regions 
aren’t squares.



  

Subdividing a Square

Squares can’t 
overlap or hang 
off the figure.



  

For what values of n can a square be 
subdivided into n squares?



  

1   2   3   4   5   6   7   8   9   10   11   12
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1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

# corners: 4

# squares: <4



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

By the pigeonhole 
principle, at least 
one smaller square 
needs to cover at 
least two of the 
original square’s 
corners.
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# corners: 4

# squares: 5



  

1   2   3   4   5   6   7   8   9   10   11   12

# corners: 4

# squares: 5

At least one square 
cannot be covering 
any of the original 
corners



  

1   2   3   4   5   6   7   8   9   10   11   12



  

1   2   3   4   5   6   7   8   9   10   11   12



  

1   2   3   4   5   6   7   8   9   10   11   12

1
2

3

456



  

1   2   3   4   5   6   7   8   9   10   11   12

1

23

5 6

74



  

1   2   3   4   5   6   7   8   9   10   11   12

1

2

3

4 5 6 7

8



  

1   2   3   4   5   6   7   8   9   10   11   12

3

4

567

8 9

21



  

1   2   3   4   5   6   7   8   9   10   11   12

3

7

1 2

98

4

56

10



  

1   2   3   4   5   6   7   8   9   10   11   12

1

2

3

4 5 6 7

10 9

811



  

1   2   3   4   5   6   7   8   9   10   11   12

3

4

567

8

2

9 10
1112

1



  

An Insight
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An Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. ■
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Generalizing Induction
● When doing a proof by induction,

● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● If you do, make sure that…
● … you actually need all your base cases. Avoid redundant 

base cases that are already covered by a mix of other base 
cases and your inductive step.

● … you cover all the numbers you need to cover. Trace out 
your reasoning and make sure all the numbers you need 
to cover really are covered.

● As with a proof by cases, you don’t need to 
separately prove you’ve covered all the options. We 
trust you. 😃



  

More on Square Subdivisions

● There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

Ramsey Revisited



  

Ramsey Revisited

● In lecture, we proved the Theorem on 
Friends and Strangers: any 6-clique whose 
edges are painted one of two colors 
contains a monochrome triangle.

● On PS4, you proved that any 17-clique 
whose edges are painted one of three colors 
has a monochrome triangle.

● What about if you use four colors? Five 
colors? Six colors?



  

Theorem: If n ≥ 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n ≥ 1, from which the theorem follows.

As a base case, we prove P(1), that for any way of painting the edges of a
3-clique using one color, we can find a triangle. A 3-clique is a triangle, and
since its edges were all painted the same color it’s a monochrome triangle.

Next, pick a natural number k ≥ 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are
3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized
pigeonhole principle, this means v is adjacent to at least

 
nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, then v, r, s, v forms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. ■ 
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An Observation



  

Start with 
larger clique

Get to smaller 
clique

Start with
fewer squares

Get to more 
squares



  

Following the Rules

● When working with square subdivisions, our 
predicate looked like this:

P(n) is “there exists a way to subdivide
a square into n squares.”

● When working with cliques, our predicate looked 
like this:

P(n) is “for any coloring of a 3n!-clique,
there is a monochrome triangle.”

● With squares, the quantifier is ∃. With cliques, the 
first quantifier is ∀.

● This fundamentally changes the “feel” of induction.



  

Build Up with ∃

● In the case of squares, in our inductive step, we prove

If

    there exists a subdivision into k squares,

then

    there exists a subdivision into k+3 squares.

● Assuming the antecedent gives us a concrete subdivision into 
k squares.

● Proving the consequent means finding some way to 
subdivide in to k+3 squares.

● The inductive step goal is to “build up:” start with a smaller 
number of squares, and somehow work out what to do to get 
a larger number of squares.



  

Build Down with ∀

● In the case of cliques, in our inductive step, we prove

If

    for all colorings of a 3k!-clique, there’s a mono. tri.

then

    for all colorings of a 3(k+1)!-clique, there’s a mono. tri.

● Assuming the antecedent means once we find a k-colored 
3k!-clique, we get a monochrome triangle.

● Proving the consequent means picking an arbitrary coloring 
of a 3(k+1)!-clique, then trying to find a triangle in it.

● The inductive step goal is to “build down:” start with a 
larger clique, then find a way to turn it into a smaller clique.



  

More on Ramsey Triangles

● We’ve proved that 3n! nodes is enough to get a triangle 
with n ≥ 1 colors on the edges.

● For n = 3, this says we need 18 nodes, but as you proved 
on PS4 you can do this with 17 nodes.

● For n = 4, this says we need 72 nodes. We know that 50 
nodes is too few and 64 nodes is enough. The actual 
answer is therefore somewhere between 51 and 64.

● Open problem: Find the exact minimum number of nodes 
needed to get a monochrome triangle with n ≥ 4 colors.

● Challenge problem: Show that ⌈e · n!⌉ nodes is always 
sufficient to get a monochrome triangle with n ≥ 1 colors. 
(This is hard but doable if you know the material from 
CS103, plus the Taylor series for e. Come talk to me if you 
want more details.)



  

Time-Out for Announcements!



  

Problem Set Five

● Problem Set Four was due at 2:30PM today.
● Problem Set Five goes out today. It’s due next 

Friday at 2:30PM.
● Play around with everything we’ve covered so far, 

plus a healthy dose of induction and inductive 
problem-solving.

● Before starting, read our “Guide to Induction” 
and “Induction Proofwriting Checklist,” which 
cover common and important cases to look for.

● As always, ping us if you have any questions! 
That’s what we’re here for.



  

Your Questions



  

“While I'm mostly sure I want to pursue CS or something 
closely related as career, there are so many other subjects 
I want to explore - from math, ME to arts, archaeology. (It 
would be way easier to name majors I'm not interested in 
than ones I'm interested in!) I feel I can't fit everything I 

want to explore into four years. What do I do?”

Remember that you have your whole life ahead of you 
with which to explore these areas. So take the long view. 
You’re here now. What can you do to give yourself a 

foundation to learn more about these areas and explore 
later after you graduate? Does that mean taking multiple 
classes in those areas? Taking a single good intro class? 
Just hanging out and chatting with people who study this 

area? Reading a good book on the subject?

Framing things this way – what’s best to do now versus 
later? – might help reframe this in a way that makes it 

more tractable.



  

Back to CS103!



  

Complete Induction



  

Guess what‽



  

It’s time for

Mathematicalesthenics!
MathematiCalesthenics!



  

It’s time for

Mathematicalesthenics!
 



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as the 
person to your left in your row stands up.

This is kinda
like P(0).

This is kinda like 
P(k)  → P(k+1).



  

Everyone, please be seated.



  

Let’s do this again… with a twist!



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as 
everyone left of you in your row stands up.

This is kinda
like P(0).

What sort of 
sorcery is this?



  

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Mathematical Induction

● You can write proofs using the principle 
of mathematical induction as follows: 
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that

P(k) is true. 
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

Complete Induction

● You can write proofs using the principle 
of complete induction as follows:
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that 

P(0), P(1), P(2), …, and P(k) are all true.
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

An Example: Eating a Chocolate Bar



  



  



  



  

Eating a Chocolate Bar

● You have a 1 × n chocolate bar subdivided 
into 1 × 1 squares.

● You eat the chocolate bar from left to right 
by breaking off one or more squares and 
eating them in one (possibly enormous) bite.

● How many ways can you eat a…
● 1 × 1 chocolate bar?
● 1 × 2 chocolate bar?
● 1 × 3 chocolate bar?
● 1 × 4 chocolate bar?



  There are eight ways to eat a 1 × 4 chocolate bar.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat one piece 
first, you then eat the 

remaining 1 × 3 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat two pieces 
first, you then eat the 

remaining 1 × 2 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat three pieces 
first, you then eat the 

remaining 1 × 1 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

Or you could eat the 
whole chocolate bar at 
once. Ah, gluttony. 😃



  

Eating a Chocolate Bar

● There’s…
● 1 way to eat a 1 × 1 chocolate bar,
● 2 ways to eat a 1 × 2 chocolate bar,
● 4 ways to eat a 1 × 3 chocolate bar, and
● 8 ways to eat a 1 × 4 chocolate bar.

● Our guess: There are 2n – 1 ways to eat a 1 × n 
chocolate bar for any natural number n ≥ 1.

● And we think it has something to do with this insight: 
we eat the bar either by
● eating the whole thing in one bite, or
● eating some piece of size k, then eating the remaining n – k 

pieces however we’d like.
● Let’s formalize this!



  

Theorem: For any natural number n ≥ 1, there are exactly 2n – 1 ways to eat a
1 × n chocolate bar from left to right.

Proof: Let P(n) be the statement “there are exactly 2n – 1 ways to eat a 1 × n
chocolate bar from left to right.” We will prove by induction that P(n)
holds for all natural numbers n ≥ 1, from which the theorem follows.

As our base case, we prove P(1), that there is exactly 21 – 1 = 1 way to eat a
1 × 1 chocolate bar from left to right. The only option here is to eat the
entire chocolate bar at once, so there’s just one way to eat it, as needed.

For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that there
are exactly 2k ways to eat a 1 × (k+1) chocolate bar.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 2k-1 + 2k-2 + … + 22 + 21 + 20    =    1 + 2k – 1    =    2k.

Thus P(k+1) holds, completing the induction. ■
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More on Chocolate Bars

● Imagine you have an m × n chocolate bar. 
Whenever you eat a square, you have to eat all 
squares above it and to the left.

● How many ways are there to eat the chocolate bar? 

 

 

 

● Open Problem: Find a non-recursive exact formula 
for this number, or give an approximation whose 
error drops to zero as m and n tend toward infinity.



  

Induction vs. Complete Induction

I can solve
smaller versions
of the problem

I can solve
bigger versions
of the problem



  

Induction vs. Complete Induction

Regular
Induction

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Regular induction is 
great when you know 

exactly how much smaller 
your “smaller” problem 

instance is.



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Complete induction is 
great when you know 
things get smaller, but 
you’re not sure by how 

much.



  

An Important Milestone



  

Recap: Discrete Mathematics

● The past five weeks have focused exclusively 
on discrete mathematics:

Induction    Functions

Graphs      The Pigeonhole Principle

Formal Proofs   Mathematical Logic

Set Theory   Cardinality
● These are building blocks we will use 

throughout the rest of the quarter.
● These are building blocks you will use 

throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits 
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time

● Formal Language Theory
● How are we going to formally model 

computation?
● Finite Automata

● A simple but powerful computing device 
made entirely of math!

● DFAs
● A fundamental building block in computing.
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