Mathematical Induction

Part Two



Outline for Today

e Variations on Induction

« Starting later, taking different step sizes, and
more!

 “Build Up” versus “Build Down”

« An inductive nuance that follows from our
general proofwriting principles.

« Complete Induction

* When one assumption isn’t enough!



Recap from Last Time



Let P be some predicate. The principle of mathematical
induction states that if

It it starts P(0) is true and it stays
True..
True.. and

Vk € N. (P(k) » P(k+1))
then

Vn € N. P(n)

Then i1's
always True,



Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2" - 1.” We will prove, by induction, that
P(n) is true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since
the sum of the first zero powers of two is zero and 2° - 1

is zero as well, we see that P(0) is true.

For the inductive step, assume that for some arbitrary
k € N that P(k) holds, meaning that

20+ 2V + | 4+ 2K =2k - 1, (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2%t - 1. To see this,
notice that

20+ 21+ . 4+ 21 4 2k = (20 4 21 4+ | 4 2K1) 4 2K
= 2k -1 4 2k (via (1))
= 2(2K) -1
= 2k+1 _ 1,
Theretfore, P(k + 1) is true, completing the induction. W



New Stuff!



Variations on Induction: Starting Later



Induction Starting at O

* To prove that P(n) is true for all natural
numbers greater than or equal to O:
e Show that P(0) is true.

 Show that for any k = 0, that
if P(k) is true, then P(k+1) is true.

e Conclude P(n) holds for all natural numbers
greater than or equal to O.



Induction Starting at m

* To prove that P(n) is true for all natural
numbers greater than or equal to m:
e Show that P(m) is true.

 Show that for any k = m, that
if P(k) is true, then P(k+1) is true.

e Conclude P(n) holds for all natural numbers
greater than or equal to m.



Variations on Induction: Bigger Steps



Subdividing a Square




Subdividing a Square

These regions
aren’T squares,




Subdividing a Square

Squares can’t
overlap or hang
ott the figure,




For what values of n can a square be
subdivided into n squares?



An Insight




An Insight




An Insight

* If we can subdivide a square into n squares, we
can also subdivide it into n + 3 squares.

 Since we can subdivide a bigger square into 0, 7,
and 8 squares, we can subdivide a square into n
squares for any n = 6:

« For multiples of three, start with 6 and keep adding
three squares until n is reached.

 For numbers congruent to one modulo three, start
with 7 and keep adding three squares until n is
reached.

 For numbers congruent to two modulo three, start
with 8 and keep adding three squares until n is
reached.



Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

2 2

1 = 1|2 1 3
6[7] , 4

6(5|4 514 8[7[6[5

For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction.



Generalizing Induction

« When doing a proof by induction,

 feel free to use multiple base cases, and
» feel free to take steps of sizes other than one.

 If you do, make sure that...

* ... you actually need all your base cases. Avoid redundant
base cases that are already covered by a mix of other base
cases and your inductive step.

... you cover all the numbers you need to cover. Trace out
your reasoning and make sure all the numbers you need
to cover really are covered.

» As with a proof by cases, you don’t need to
separately prove you’ve covered all the options. We
trust you.



More on Square Subdivisions

 There are a ton of interesting questions

that come up when trying to subdivide a
rectangle or square into smaller squares.

» In fact, one of the major players in early
graph theory (William Tutte) got his start
playing around with these problems.

* Good starting resource: this Numberphile
video on Squaring the Square.



https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be

Ramsey Revisited



Ramsey Revisited

* In lecture, we proved the Theorem on
Friends and Strangers: any 6-clique whose
edges are painted one of two colors
contains a monochrome triangle.

* On PS4, you proved that any 17-clique
whose edges are painted one of three colors
has a monochrome triangle.

 What about if you use four colors? Five
colors? Six colors?



3n!

The notation n! represents n
factorial, the product of all natural
numbers between 1 and n, inclusive.

5l =1 x2x3%x4x5.

The value 3n! is read as 3(n!).




Theorem: If n = 1 is a natural number, then for any way of painting the edges
of a 3n!-clique with n colors, the clique has a monochrome triangle.

Proof: Let P(n) be the statement “for all ways of coloring a 3n!-clique’s edges
n colors, the clique will have a monochrome triangle.” We will prove by
induction that P(n) holds for all n = 1, from which the theorem follows.

As a base case, we prove P(1). So pick a 3-clique and color its edges with
one color; we need to show it contains a monochrome triangle. But the
3-clique itself is a monochrome triangle, so P(1) holds.

Next, pick a natural number k = 1 and assume P(k) is true, that any coloring
of the edges of a 3k!-clique with k colors has a monochrome triangle. We
need to show P(k+1) is true. To do so, pick a coloring of the edges of a
3(k+1)!-clique with k+1 colors. We need to find a monochrome triangle.

Pick any node v in the clique and look at the edges incident to v. There are

3(k+1)! - 1 other nodes in the clique and k+1 colors. By the generalized

pigeonhole principle, this means v is adjacent to at least

3(k+1)! — 1 1
k+1 k+1

3k! —

= 3k!

nodes by edges of the same color. Assume WLOG that color is blue. If
among those nodes is a blue edge {r, s}, thenv, r, s, vforms a monochrome
triangle. Otherwise, all 3k! of those nodes are linked by edges of non-blue
colors. We then have a 3k!-clique whose edges are colored using k colors, so
by our inductive hypothesis it contains a monochrome triangle. Either way,
we find our triangle, so P(k+1) holds, completing the induction. W



An Observation



Start with
larger clique

Get to smaller
clique

Start with
fewer squares

-

Get to more
squares




Following the Rules

« When working with square subdivisions, our
predicate looked like this:

P(n) is “there exists a way to subdivide
a square into n squares.”

« When working with cliques, our predicate looked
like this:

P(n) is “for any coloring of a 3n!-clique,
there is a monochrome triangle.”

 With squares, the quantifier is 4. With cliques, the
first quantifier is V.

« This fundamentally changes the “feel” of induction.



Build Up with 4

In the case of squares, in our inductive step, we prove
If

there exists a subdivision into k squares,
then
there exists a subdivision into k+3 squares.

Assuming the antecedent gives us a concrete subdivision into
k squares.

Proving the consequent means finding some way to
subdivide in to k+3 squares.

The inductive step goal is to “build up:” start with a smaller
number of squares, and somehow work out what to do to get
a larger number of squares.



Build Down with V

In the case of cliques, in our inductive step, we prove
If

for all colorings of a 3k!-clique, there’s a mono. tri.
then

for all colorings of a 3(k+1)!-clique, there’s a mono. tri.

Assuming the antecedent means once we find a k-colored
3k!-clique, we get a monochrome triangle.

Proving the consequent means picking an arbitrary coloring
of a 3(k+1)!-clique, then trying to find a triangle in it.

The inductive step goal is to “build down:” start with a
larger clique, then find a way to turn it into a smaller clique.



More on Ramsey Triangles

« We’ve proved that 3n! nodes is enough to get a triangle
with n = 1 colors on the edges.

 For n = 3, this says we need 18 nodes, but as you proved
on PS4 you can do this with 17 nodes.

 For n = 4, this says we need 72 nodes. We know that 50
nodes is too few and 66 nodes is enough. The actual
answer is therefore somewhere between 51 and 66.

 Open problem: Find the exact minimum number of nodes
needed to get a monochrome triangle with n = 4 colors.

* Challenge problem: Show that [e - n!| nodes is always
sufficient to get a monochrome triangle with n = 1 colors.
(This is hard but doable if you know the material from
CS103, plus the Taylor series for e. Come talk to me if you
want more details.)



Time-Out for Announcements!



Problem Set Five

* Problem Set Four was due at 2:30PM today.

* Problem Set Five goes out today. It’s due next
Friday at 2:30PM.

« Play around with everything we’ve covered so far,
plus a healthy dose of induction and inductive
problem-solving.

* Before starting, read our “Guide to Induction”
and “Induction Proofwriting Checklist,” which
cover common and important cases to look for.

» As always, ping us if you have any questions!
That’'s what we’'re here for.



Your Questions



“While I'm mostly sure I want to pursue CS or something
closely related as career, there are so many other subjects
I want to explore - from math, ME to arts, archaeology. (It
would be way easier to name majors I'm not interested in
than ones I'm interested in!) I feel I can't fit everything I
want to explore into four years. What do I do?”

Remember that you have your whole life ahead of you
with which o explore these areas. So fake the long view,
Youre here now, Whal can you do to give yourself a
foundatfion fo learn more about these areas and explore
later affer you graduate? Does that mean faking mulfiple
classes in those areas? Taking a single good infro class?
Just hanging oul and chatting with people who study this
area? Reading a good book on the subject?

Framing things this way - what’s best to do now versus
later? — might help retrame this in a way that makes it
more Tractable,




Back to CS103!



Complete Induction



Guess what?



It’s time for

Mathematical
Calesthenics!



This is kinda
like P(0).,
If you are the leftmost person

in your row, stand up right now.

Everyone else: stand up as soon as the
person to your left in your row stands up.

This is kinda like
P(k) » P(k+1),




Let’s do this again... with a twist!



This is kinda
like P(0).
If you are the leftmost person

in your row, stand up right now.

Everyone else: stand up as soon as
everyone left of you in your row stands up.

What sort of
sorcery is This?




Let P be some predicate. The principle of complete
induction states that if

- SWL/aY—TS\> P(0) is true .and it stays
e and True..

for all k € N, if P(0), ..., and P(k) are true,
then P(k+1) is true

then

Vn € N. P(n)

Then i1's
always True,



Mathematical Induction

* You can write proofs using the principle
of mathematical induction as follows:

Define some predicate P(n) to prove by
induction on n.

Choose and prove a base case (probably, but
not always, P(0)).

Pick an arbitrary k € N and assume that
P(k) is true.

Prove P(k+1).
Conclude that P(n) holds for all n € N.



Complete Induction

* You can write proofs using the principle
of complete induction as follows:

Define some predicate P(n) to prove by
induction on n.

Choose and prove a base case (probably, but
not always, P(0)).

Pick an arbitrary k € N and assume that
P0), P(1), P(2), ..., and P(k) are all true.

Prove P(k+1).
Conclude that P(n) holds for all n € N.



An Example: Eating a Chocolate Bar



Eating a Chocolate Bar

* You have a 1 X n chocolate bar subdivided
into 1 X 1 squares.

* You eat the chocolate bar from left to right
by breaking off one or more squares and
eating them in one (possibly enormous) bite.

* How many ways can you eat a...

e 1 X 1 chocolate bar?

e 1 X 2 chocolate bar?
e 1 X 3 chocolate bar? _

e 1 X 4 chocolate bar?




There are eight ways to eat a 1 X 4 chocolate bar.



;3]

It you eal one piece
first, you then eaf the

| .

remalning 1 x 3

chocolate bar any way
youd like,

|-

|

There are eight ways to eat a 1 X 4 chocolate bar.



It you eal fwo pieces
firsT, you Then eal the
remalning 1 x 2
chocolate bar any way
youd like,

There are eight ways to eat a 1 X 4 chocolate bar.



It you eat fhree pieces
firsT, you Then eal the
remalning 1 x 1
chocolate bar any way
youd like,

There are eight ways to eat a 1 X 4 chocolate bar.



Or you could eal the
whole chocolate bar at
once, Ah, gluftony,

There are eight ways to eat a 1 X 4 chocolate bar.



Eating a Chocolate Bar

* There’s...

1 way to eat a 1 X 1 chocolate bar,

2 ways to eat a 1 X 2 chocolate bar,

4 ways to eat a 1 X 3 chocolate bar, and
8 ways to eat a 1 X 4 chocolate bar.

* OQur guess: There are 2"-!waystoeatal X n
chocolate bar for any natural number n = 1.

 And we think it has something to do with this insight:
we eat the bar either by

» eating the whole thing in one bite, or

* eating some piece of size k, then eating the remaining n - k
pieces however we’d like.

e Let’s formalize this!



Theorem: For any natural number n = 1, there are exactly 2"-! ways to eat a
1 X n chocolate bar from left to right.

Proof: Let P(n) be the statement “there are exactly 2"-! waystoeata 1 X n
chocolate bar from left to right.” We will prove by induction that P(n)
holds for all natural numbers n = 1, from which the theorem follows.

As our base case, we prove P(1), that there is exactly 2!-! = 1 way to eat a
1 x 1 chocolate bar from left to right. The only option here is to eat the
entire chocolate bar at once, so there’s just one way to eat it, as needed.

For our inductive step, assume for some arbitrary natural number k = 1
that P(1), ..., and P(k) are true. We need to show P(k+1) is true, that there
are exactly 2 ways to eat a 1 X (k+1) chocolate bar.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 = r =k, leaving a chocolate bar of size k+1-r, then eat that chocolate
bar from left to right. Since 1 = r < k, we know that 1 = k+1-r <k, so by
our inductive hypothesis there are 2%-" ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 204 2k2 4 .+ 22421 420 = 1 4+2k-1 = 2k
Thus P(k+1) holds, completing the induction. W



More on Chocolate Bars

* Imagine you have an m X n chocolate bar.
Whenever you eat a square, you have to eat all
squares above it and to the left.

« How many ways are there to eat the chocolate bar?

 Open Problem: Find a non-recursive exact formula
for this number, or give an approximation whose
error drops to zero as m and n tend toward infinity.



Induction vs. Complete Induction

I can solve I can solve
smaller versions » bigger versions
of the problem of the problem




Induction vs. Complete Induction

Regular
Induction

Exactly k Exactly k+3

squares > squares

Reqgular induction is
greal when you know
exacTly how much smaller
your ‘smaller” problem
instance is.,




Induction vs. Complete Induction

Complete induction is
great when you know
things gel smaller, but
you've not sure by how

much,
Complete
Induction
Bars with A bar with
fewer than » exactly k+1
k squares squares



An Important Milestone



Recap: Discrete Mathematics

 The past five weeks have focused exclusively
on discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle
Formal Proofs Mathematical Logic

Set Theory Cardinality

* These are building blocks we will use
throughout the rest of the quarter.

* These are building blocks you will use
throughout the rest of your CS career.



Next Up: Computability Theory

 It's time to switch gears and address the limits
of what can be computed.

 We'll explore these questions:

« How do we model computation itself?

 What exactly is a computing device?

 What problems can be solved by computers?
 What problems can't be solved by computers?

* Getl ready to explore the boundaries of
what computers could ever be made to do.



Next Time

« Formal Language Theory

« How are we going to formally model
computation?

 Finite Automata

* A simple but powerful computing device
made entirely of math!

* DFAs

« A fundamental building block in computing.
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