Finite Automata

Part One

Computability Theory

What problems can we solve with a computer?

/

What kind of
computer?

Two Challenges

 Computers are dramatically better now than
they’ve ever been, and that trend continues.

* Writing proofs on formal definitions is hard,
and computers are way more complicated
than sets, graphs, or functions.

 Key Question: How can we prove what
computers can and can’t do...

* ... so that our results are still true in 20 years?
... without multi-hundred page proots?

Enter Automata

 An automaton is a mathematical model of a
computing device.

» It’s an abstraction of a real computer, the way
that graphs are abstractions of social networks,
transportation grids, etc.

 The automata we’ll explore are

 powerful enough to capture huge classes of computing
devices, yet

« simple enough that we can reason about them in a
small space.

 They’'re also fascinating and useful in their own
rights. More on that later.

What do these automata look like?

A Tale of Two Computers

© = b~ N
N U1 OO

w O VO
X

[
+

K Why does this
computer..

Seel” less
powerful than
This one?

Calculators vs. Desktops

* A calculator has a small amount of memory. A
desktop computer has a large amount of
memory.

* A calculator performs a fixed set of functions. A
desktop is reprogrammable and can run many
different programs.

 These two distinctions account for much of the
difference between “calculator-like” computers and
“desktop-esque” computers.

« In CS103, we’ll first explore “small-memory”
computers in detail, then discuss “large-memory”
computers in depth.

Computing with Finite Memory

14
4
1

w O O
X

O . +

Data stored electronically, Data stored in wood.
Algorithm is in silicon, Algorithm is in brain,
Memory limited by display. Memory limited by beads,

How do we model “memory” and
"an algorithm” when they can take
on so many forms?

What’s in Common?

 These machines receive input
from an external source.

/ 8 9 =+

« That input is provided
sequentially, one discrete unit 4 5 6 x
at a time. 1 2 3 -
 Each input causes the device to O . = +

change configuration. This
change, big or small, is where
the computation happens.

* Once all input is provided, we
can read off an answer based
on the configuration of the
device.

Modeling Finite Computation

 We will model a finite- 3

memory computer as a Stﬂ,@z m
collection of states linked y

by transitions.

« Each state corresponds to
one possible configuration

Y d
of the device’s memory. @ Zq:a)

« Each transition indicates a
how memory changes in
response to inputs.

« Some state is designated
as the start state. The
computation begins in that
state.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
» To run this device, we begin

in our start state and scan
the input from left to right. Li blalb|lbla

« Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—"
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
» To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

« Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
» To run this device, we begin

in our start state and scan
the input from left to right. alb

» o

« Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
» To run this device, we begin

in our start state and scan
the input from left to right. albla

b
« Each time the machine sees 4+
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
» To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

« Each time the machine sees)
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3
strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b b b A

» The string represents the full
sequence of inputs to the

N a
device. @ Zq3 ,
» To run this device, we begin

in our start state and scan
the input from left to right. alblalblb :J

« Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

 This device processes 3

strings made of characters. start g qoz m
« Each character represents AN—
some external input to the

device. b E b E

» The string represents the full
sequence of inputs to the

N a
device. @ ZqB ’
» To run this device, we begin

in our start state and scan
the input from left to right. alblalbl|bla

« Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

Modeling Finite Computation

* Once we’ve finished entering

a
all the characters of our input, start m
we need to obtain the result of qOZ q1

the computation. d ‘
» In general, computers can E b E E

produce all sorts of things as

the result of a computation: a L~y a

number, a piece of text, etc. @ Z qs)
« As a simplifying assumption, 3

we’ll assume that we just need

to get a single bit of output. alblalblbla

That is, our machines will just
say YES or NO.

* (This can be generalized -
come talk to me after class if
you’re curious how!)

Modeling Finite Computation

« Some of the states in our
computational device will
be marked as accepting
states. These are denoted
with a double ring.

« If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES)

 If the device does not end
in an accepting state after
seeing all the input, it

rejects the input (says NO). nl: APPHIWAI.

Modeling Finite Computation

* Try it yourself! a
Which of these 2 m
b| |b

strings does this a T
device accept?

aab @

aabb a
abbababba

Finite Automata

« This type of computational
device is called a finite
automaton (plural: finite
automata).

Finite automata model
computers where (1)
memory is finite and (2)
the computation produces
as YES/NO answer.

In other words, finite
automata model
predicates, and do so with
a fixed, finite amount of
memory.

b

L~
(@)

om0
bl |b

b

Finite-memory
Computer

Formalizing Things

Strings

An alphabet is a finite, nonempty set of symbols
called characters.

« Typically, we use the symbol X to refer to an alphabet.

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

Example: Let 2 = {a, b}. Here are some strings over :
a aabaaabbabaaabaaaabbb abbababba

The empty string has no characters and is denoted €.

Calling attention to an earlier point: since all strings
are finite sequences of characters from %, you cannot
have a string of infinite length.

Languages

* A formal language is a set of strings.

 We say that L is a language over 2 if it is a
set of strings over Z.

 Example: The language of palindromes over
2 = {a, b, c} is the set

« {g,a,b, c, aa, bb, cc, aaa, aba, aca, bab, ... }

 The set of all strings composed from letters in
2. is denoted X*.

 Formally, we say that L is a language over X if
L C >*,

Mathematical Lookalikes

« We now have €, ¢, 2, and Z*. Yikes!
 The symbol € is the element-of relation.
« The symbol € is the empty string.

 The symbol X denotes an alphabet.

 The expression 2* means “all strings that can
be made from characters in 2.”

» That lets us write things like
We have € € 2*, but € ¢ 2.

* Ever get confused? Just ask!

The Cast of Characters

« Languages are sets of strings.

* Strings are finite sequences of characters.
 Characters are individual symbols.
 Alphabets are sets of characters.

Languages Alphabets

are sets of are nonempty, finite sets of

y y

. are finite sequences of
Strings Characters

Finite Automata and Languages

« Let A be an
automaton that
processes strings
drawn from an

alphabet 2. starty (> :

 The language of A,
denoted £ (A), is the
set of strings over X
that A accepts:

F(A) ={we X*| A accepts w }

Finite Automata and Languages

e Let D be the automaton shown to the
right. It processes strings over {a, b}.

 Notice that D accepts
all strings of a’s and b’ sstm
that end in a and
rejects everything else.
e So¥D)={we{a b}*|wendsin a }.

F(A) ={we X*| A accepts w }

Finite Automata and Languages

a,be -t This means “take this
start transition if you see
- anaorab.”

a, b

o

a,

b b b
A A A
RORONONG®
start a,ba,b start)

F(A) ={we X*| A accepts w }

The Story So Far

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.

Some number of states are designated as accepting
states.

The automaton processes a string by beginning in the
start state and following the indicated transitions.

If the automaton ends in an accepting state, it accepts
the input.

Otherwise, the automaton rejects the input.

The language of an automaton is the set of strings it
accepts.

Time-Out For Announcements!

Midterm Graded

 We’ve finished grading the midterm exam.

 Graded exams are available online through
Gradescope.

* Solutions are up on the course website,
along with statistics and common mistakes.

* Please read the solutions. They contain
statistics, common mistakes, and advice for
going forward.

Your Questions

“I did horribly on Midterm 1-- this isn't
exactly a question, but any advice?”

For starters — I'm sorvry To hear that:

So lef’s falk next steps., First, if youwd like To meet with me or one of the TAs,
email fThe statt list or post on EdStem. We'd be happy to chat one—on—one with
you To figure out what’s working and would could use some tweaking.

Next, review how you're engaging with the course and see what you can do
differently, We have a *How 1o Improve in CS103* document up on the course
website fhat offers advice about how fo do this, Some of our suggestions are
about ways To be proactive with your learning rather than reactive, Others are
about specific things To do to make sure you'vre properly inferpreting problem
set feedback, And some has to do with how fo sfudy for exams,

Hang in there, We've al the haltway point in the quarter and there’s still plenty
of time to master this maferial, I've seen people make incredible progress since
the first midterm, and we're confident you can do this as well:

Back to CS103!

A Small Problem

. 1HAVENO
= IDEAWHAT
I'M DOING

-

Another Small Problem

IHAVENO

IDEA WHAT
I'M IIIII_IE

The Need for Formalism

 In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

» All of the following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

 What happens if there are multiple
transitions out of a state on some input?

DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

« A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

Is this a DFA over {0, 1}7?

0

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

start (),1
O’]-OI]-

Is this a DFA over {0, 1}7?

Is this a DFA?

"-r _1-'I
8- B
e S
R -
- - ‘_I P s ' e :-_‘1‘ l.ih-
B F - . u & i !
f_‘lr H i - "'. = F &5 F - - o - ll r-' h] -
i, . £ ki : =T

Drinking Family of Aardvarks

Designing DFAS

* At each point in its execution, the DFA
can only remember what state it is in.

 DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.

« Each state acts as a “memento” of what
you're supposed to do next.

* Only finitely many different states means
only finitely many different things the
machine can remember.

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Each stale remembers

the vemainder ot the

number of bs seen so
far modulo three,

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b

More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Lef’s have fhe @ symbol be a placeholder for *some character fhaf
isn't a star or slash,”

Try designing a DFA for comments: Here’'s some fest cases o help
you check your work:

Accepted: Rejected:
[*a*/ [**
[**/ [**[a[*aa*/
/***/ aaa/**laa

[*aaa*aaa*/ [*]

[*ala*/ [**af

[/aaaa

More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Next Time

* Reqgular Languages
 An important class of languages.

* Nondeterministic Computation
 Why must computation be linear?

- NFAs

 Automata with Magic Superpowers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

