Finite Automata

Part 'Two

Recap from Last Time

Formal Language Theory

 An alphabet is a set, usually denoted 2,
consisting of elements called characters.

* A string over X is a finite sequence of zero or
more characters taken from 2.

 The empty string has no characters and is
denoted .

A language over 2 is a set of strings over 2.
 The language X* is the set of all strings over 2.

DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

« A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

The Language of an Automaton

* If D is a DFA that processes strings over
2., the language of D, denoted £ (D), is
the set of all strings D accepts.

 Formally:
(D) ={weX¥| Daccepts w }

New Stuff!

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

start

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tar

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart
b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tt@@ a

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start a g
to W O

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start -@ 3 »(q\ . a
AN

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start -@ 3 »(q\ . a
AN

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start @ a »(q\ a
YR

b

More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Lef’s have fhe @ symbol be a placeholder for *some character fhaf
isn't a star or slash,”

Lef’s design a DFA for C—style comments, Those are the ones

That start with /% and end with %/,

Accepted: Rejected:
[*a*/ [**
/**l /**/a/*aa*l
/***/ aaa/**laa

[*aaa*aaa*/ [*/]

[*a[a*/ [**a]

[/aaaa

More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Tabular DFAs

0

O 1

Tabular DFAs

Tabular DFAs

Tabular DFAs

1 0
start 0 " ':.
.@e .Z
1
0O 1
f*qO ql qO
These sTars dq, 4; 4,

indicate accepting

sTates, q2 CZ3 qO

Tabular DFAs

0O 1
>k
ﬁ’ dy 4, 4,
Since This is the d, 4; 4,
first vow, if's the
sTart sfate. q2 CZ3 qO
>k
q3 q3 q3

Tabular DFAs

1 0)
EORORO
1 2
0O 1
* Question to
qO ql qO ponder: Why isnd
There a column
ql q3 q2 here tor Z?
d, 45 {4,
k
d, 4; (,

Code? In a Theory Class?

int kTransitionTable[kNumStates][kNumSymbols] = {
{@: O: 1: 3: 7: 1’ m}:

}s

bool kAcceptTable[kNumStates] = {
false,
true,
true,

¥
bool SimulateDFA(string input) {
int state = 0;
for (char ch: input) {
state = kTransitionTable[state][ch];
}

return kAcceptTable[state];

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (D) = L.

If L is a language and £(D) = L, we say
that D recognizes the language L.

The Complement of a Language

* Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*%-L

3K

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*%-L

3K

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

L=3*-1L

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

Good prootwriting
exercise: prove L =1L
for any language L,

Complementing Regular Languages

L ={wEe€{a, b}*| wcontains aa as a substring }

b
start a a \
0!
b

L = { we€ {a, b}*| w does not contain aa as a substring }
b

start

)2

®

2

®
©

a
b

Complementing Regular Languages

L={we/{a, * [/}*| wrepresents a C-style comment }

Complementing Regular Languages

L={we{a * [/}*| wdoesn't represent a C-style
comment }

Complementing Regular Languages

L={we{a * [/}*| wdoesn't represent a C-style
comment }

Closure Properties

» Theorem: If L is a regular language, then L is
also a regular language.

* As a result, we say that the regular languages
are closed under complementation.

Question to ponder:
are the nonregular
languages closed under
complementation?

All languages

N FAS

Revisiting a Problem

N FASs

* An NFA is a

e Nondeterministic
 Finite
 Automaton

* Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

« The machine accepts if that series of choices leads to an
accepting state.

A model of computation is nondeterministic if the
computing machine has a finite number of choices
available to make at each point, possibly including zero.

 The machine accepts if any series of choices leads to an
accepting state.

* (This sort of nondeterminism is technically called existential
nondeterminism, the most philosophical-sounding term
we’ll introduce all quarter.)

A Simple NFA

A Simple NFA

4, has Two Transitions

defined on 1

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

ol 011

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(OJXORE 0
0,1 T

It a NFA needs fo make a
Transition when no transition
exists, The automaton dies and
that particular path does not
accept,

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start o 0O
(o) O @
0,1

Oh no! There's no
transition defined!

O(1|]0|1(1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

RORR O

Hello, NFA!

tart i
IORRORE O

h |1

Hello, NFA!

tart i
IORRORE O

h |1

)

Hello, NFA!

tart i
IORRORE O

h |1

)

Hello, NFA!

tart i
IORRORE O

h |1

2)

Hello, NFA!

tart i
IORRORE O

h |1

2)

Hello, NFA!

ROROR

SSEAL

= h |1

OFAPPROVAL

Tragedy in Paradise

ROAOA

Tragedy in Paradise

OO

Tragedy in Paradise

ROMOR

Tragedy in Paradise

ROMOR

Tragedy in Paradise

ROAOA

Tragedy in Paradise

ROAOA

Tragedy in Paradise

ROAOA

Tragedy in Paradise

Question to ponder:

Why is the answer
{weZX*| wendsin aaa }
not correct?

{we3X*| wends in aa }

start @ start start 5

D {e} ¥

The language of an NFA is
FS(N) ={we 2X*¥| Naccepts w }.

What is the language of each NFA?
(Assume > = {a, b}.)

Note that flipping the accept
and reject states of an NFA
doesn’t always give an NFA for
the complement of the original
language. (Why?)

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

Not at all fun or
rewarding exercise:
what is the language of
This NFA?

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

 NFAs are not required to follow e-transitions.
It's simply another option at the machine's
disposal.

Time-Out For Announcements!

Stanford CURIS

Funded CS Research Wan,ac 27
- pm

Opportunities Workshop On Zoom

Learn about two CURIS programs designed to provide funding for . _\'
undergraduate students who are new to research! In this workshop, R Cj\f\
we will provide details on both programs, share application tips, and

g Prog PP ° atfer class!

answer your questions.

Applications for both programs will be due at the end of Fall Quarter.
Slides and a recording of the workshop will be shared afterwards.

https://stanford.zoom.us/j/
993960914437
: pwd=WUxRekt2SVppb3]BKzZQ
Paid Undergraduate
CURIS Fellowships Research Experience UBJ VIXdl QT09

(RAYSRIEY

Apply to the CURIS Apply to take part in the new
Fellowship program for Paid Undergraduate Research

guaranteed CURIS summer Experience (P. U. R. E.) program

research funding (in advance for paid academic-year
of the standard CURIS research through Federal Work-

matching process)! Study!

The goal of this program is to The goal of this program is to help
support students who do not have make research more accessible to FLI
prior CS research experience and to students and to set them up for
make research more accessible to a success by enabling them to be
diverse group of students. compensated for their work.

Your Questions

“I love all the interesting problems we covered in lectures
so far, but I sometimes can't relate what we learn in class
about writing proof and discrete math to the CS
programming side. I know this is only halfway through
the quarter, but will it be clearer about what we learn in
class connect to real programming?”

The content for the rest of This quarfer contains a bunch of gems

that are immediately useful in programming., Automata, for example,

are used in the design of VI elements, nefwork controllers, compilers
and inferprefers, efc.,

More generally, The fechnigues wou've learned so far - how fo
formalize concepts, edge cases in tormal logic, efc, - are surprisingly
usetul in designing complex sustems, Building big systems is largely
about gefting the abstractions right., Concepts like functions, graphs,
and the like are supremely useful here, MapReduce is a good example
of this, as are the profocols that power fhe internetf, And knowing
FOL is useful for figuring out what fo do in edge cases in systems,

Back to CS103!

Intuiting Nondeterminism

e Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

 There are two particularly usetul
frameworks for interpreting
nondeterminism:

* Perfect positive guessing
 Massive parallelism

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

Perfect Positive Guessing

2

SSEAL

s

il
—

OFAPPROVAL

Perfect Positive Guessing

 We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.

 If there is at least one choice that leads to an
accepting state, the machine will guess it.

 If there are no choices, the machine guesses any one
of the wrong guesses.

* There is no known way to physically model this
intuition of nondeterminism - this is quite a
departure from reality!

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

We're in af least one
accepting state, so there's
some path that gefs us fo
an accepling stafe,

SSEAL

"

OFAPPROVAL

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

We'vre not in any accepling
sfate, so no possible path
accepis,

Massive Parallelism

 An NFA can be thought of as a DFA that can be in many
states at once.

« At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

* (Here's a rigorous explanation about how this works; read
this on your own time).

« Start off in the set of all states formed by taking the start state
and including each state that can be reached by zero or more
e-transitions.

« When you read a symbol a in a set of states S:
- Form the set S’ of states that can be reached by following a single a
transition from some state in S.

- Your new set of states is the set of states in S’, plus the states reachable
from S’ by following zero or more e-transitions.

Designing NFASs

Designing NFAS

e Embrace the nondeterminism!
* Good model: Guess-and-check:

* Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

 Then, have the machine deterministically check that
the choice was correct.

 The guess phase corresponds to trying lots of
different options.

 The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Nondeterministically guess when the

Cart end of the sfring is coming up.
Star
‘) . Deterministically check whether you

were correct,

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }

OO e
0
© 1

start ‘) 5 1 0 1

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Nondeterministically
guess which character
IS missing.

Deterministically check
whether That
character is indeed
MissSing.

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€H{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L={we{a b, c}*|atleastoneofa, b,orcisnotinw }

Just how powertful are NFAS?

Next Time

« The Powerset Construction
* So beautiful. So elegant. So cool!
« More Closure Properties
* Other set-theoretic operations.
« Language Transformations
« What’s the deal with the notation 2*?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228

