Finite Automata

Part 'Two



Recap from Last Time



Formal Language Theory

 An alphabet is a set, usually denoted 2,
consisting of elements called characters.

* A string over X is a finite sequence of zero or
more characters taken from 2.

 The empty string has no characters and is
denoted .

A language over 2 is a set of strings over 2.
 The language X* is the set of all strings over 2.



DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.



DFAs

« A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.



The Language of an Automaton

* If D is a DFA that processes strings over
2., the language of D, denoted £ (D), is
the set of all strings D accepts.

 Formally:
(D) ={weX¥| Daccepts w }



New Stuff!



Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }
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More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Lef’s have fhe @ symbol be a placeholder for *some character fhaf
isn't a star or slash,”

Lef’s design a DFA for C—style comments, Those are the ones

That start with /% and end with %/,

Accepted: Rejected:
[*a*/ [**
/**l /**/a/*aa*l
/***/ aaa/**laa

[*aaa*aaa*/ [*/]

[*a[a*/ [**a]

[ /aaaa




More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }
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Tabular DFAs
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Tabular DFAs
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Code? In a Theory Class?

int kTransitionTable[kNumStates][kNumSymbols] = {
{@: O: 1: 3: 7: 1’ m}:

}s

bool kAcceptTable[kNumStates] = {
false,
true,
true,

¥
bool SimulateDFA(string input) {
int state = 0;
for (char ch: input) {
state = kTransitionTable[state][ch];
}

return kAcceptTable[state];



The Regular Languages



A language L is called a regular language
if there exists a DFA D such that (D) = L.

If L is a language and £(D) = L, we say
that D recognizes the language L.



The Complement of a Language

* Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L
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The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.
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The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

Good prootwriting
exercise: prove L =1L
for any language L,




Complementing Regular Languages

L ={wEe€{a, b}*| wcontains aa as a substring }

b
start a a \
0!
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L = { we€ {a, b}*| w does not contain aa as a substring }
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Complementing Regular Languages

L={we{a * [/}*| wdoesn't represent a C-style
comment }




Closure Properties

» Theorem: If L is a regular language, then L is
also a regular language.

* As a result, we say that the regular languages
are closed under complementation.

Question to ponder:
are the nonregular
languages closed under
complementation?

All languages




N FAS



Revisiting a Problem




N FASs

* An NFA is a

e Nondeterministic
 Finite
 Automaton

* Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.



(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

« The machine accepts if that series of choices leads to an
accepting state.

A model of computation is nondeterministic if the
computing machine has a finite number of choices
available to make at each point, possibly including zero.

 The machine accepts if any series of choices leads to an
accepting state.

* (This sort of nondeterminism is technically called existential
nondeterminism, the most philosophical-sounding term
we’ll introduce all quarter.)



A Simple NFA




A Simple NFA

4, has Two Transitions

defined on 1
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A More Complex NFA

start
(OJXORE 0
0,1 T

It a NFA needs fo make a
Transition when no transition
exists, The automaton dies and
that particular path does not
accept,
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A More Complex NFA

start o 0O
(o) O @
0,1

Oh no! There's no
transition defined!

O(1|]0|1(1
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Question to ponder:

Why is the answer
{weZX*| wendsin aaa }
not correct?

{we3X*| wends in aa }

start @ start start 5

D {e} ¥

The language of an NFA is
FS(N) ={we 2X*¥| Naccepts w }.

What is the language of each NFA?
(Assume > = {a, b}.)

Note that flipping the accept
and reject states of an NFA
doesn’t always give an NFA for
the complement of the original
language. (Why?)
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e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

Not at all fun or
rewarding exercise:
what is the language of
This NFA?




e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

 NFAs are not required to follow e-transitions.
It's simply another option at the machine's
disposal.



Time-Out For Announcements!



Stanford CURIS

Funded CS Research Wan,ac 27
- pm

Opportunities Workshop On Zoom

Learn about two CURIS programs designed to provide funding for . _\'
undergraduate students who are new to research! In this workshop, R Cj\f\
we will provide details on both programs, share application tips, and

g Prog PP ° atfer class!

answer your questions.

Applications for both programs will be due at the end of Fall Quarter.
Slides and a recording of the workshop will be shared afterwards.

https://stanford.zoom.us/j/
993960914437
: pwd=WUxRekt2SVppb3]BKzZQ
Paid Undergraduate
CURIS Fellowships Research Experience UBJ VIXdl QT09

(RAYSRIEY

Apply to the CURIS Apply to take part in the new
Fellowship program for Paid Undergraduate Research

guaranteed CURIS summer Experience (P. U. R. E.) program

research funding (in advance for paid academic-year
of the standard CURIS research through Federal Work-

matching process)! Study!

The goal of this program is to The goal of this program is to help
support students who do not have make research more accessible to FLI
prior CS research experience and to students and to set them up for
make research more accessible to a success by enabling them to be
diverse group of students. compensated for their work.




Your Questions



“I love all the interesting problems we covered in lectures
so far, but I sometimes can't relate what we learn in class
about writing proof and discrete math to the CS
programming side. I know this is only halfway through
the quarter, but will it be clearer about what we learn in
class connect to real programming?”

The content for the rest of This quarfer contains a bunch of gems

that are immediately useful in programming., Automata, for example,

are used in the design of VI elements, nefwork controllers, compilers
and inferprefers, efc.,

More generally, The fechnigues wou've learned so far - how fo
formalize concepts, edge cases in tormal logic, efc, - are surprisingly
usetul in designing complex sustems, Building big systems is largely
about gefting the abstractions right., Concepts like functions, graphs,
and the like are supremely useful here, MapReduce is a good example
of this, as are the profocols that power fhe internetf, And knowing
FOL is useful for figuring out what fo do in edge cases in systems,




Back to CS103!



Intuiting Nondeterminism

e Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

 There are two particularly usetul
frameworks for interpreting
nondeterminism:

* Perfect positive guessing
 Massive parallelism



Perfect Positive Guessing

2



Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2




Perfect Positive Guessing

2

SSEAL

s

il
—

OFAPPROVAL




Perfect Positive Guessing

 We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.

 If there is at least one choice that leads to an
accepting state, the machine will guess it.

 If there are no choices, the machine guesses any one
of the wrong guesses.

* There is no known way to physically model this
intuition of nondeterminism - this is quite a
departure from reality!
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Massive Parallelism

We're in af least one
accepting state, so there's
some path that gefs us fo
an accepling stafe,
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Massive Parallelism

We'vre not in any accepling
sfate, so no possible path
accepis,




Massive Parallelism

 An NFA can be thought of as a DFA that can be in many
states at once.

« At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

* (Here's a rigorous explanation about how this works; read
this on your own time).

« Start off in the set of all states formed by taking the start state
and including each state that can be reached by zero or more
e-transitions.

« When you read a symbol a in a set of states S:
- Form the set S’ of states that can be reached by following a single a
transition from some state in S.

- Your new set of states is the set of states in S’, plus the states reachable
from S’ by following zero or more e-transitions.



Designing NFASs



Designing NFAS

e Embrace the nondeterminism!
* Good model: Guess-and-check:

* Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

 Then, have the machine deterministically check that
the choice was correct.

 The guess phase corresponds to trying lots of
different options.

 The check phase corresponds to filtering out
bad guesses or wrong options.
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Guess-and-Check
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Nondeterministically guess when the

Cart end of the sfring is coming up.
Star
‘) . Deterministically check whether you

were correct,
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Guess-and-Check

L={we{0 1}*| wends in 010 or 101 }
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Nondeterministically
guess which character
IS missing.

Deterministically check
whether That
character is indeed
MissSing.
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Guess-and-Check

L={we{a b, c}*|atleastoneofa, b,orcisnotinw }




Just how powertful are NFAS?



Next Time

« The Powerset Construction
* So beautiful. So elegant. So cool!
« More Closure Properties
* Other set-theoretic operations.
« Language Transformations
« What’s the deal with the notation 2*?
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