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Recap from Last Time



  

Formal Language Theory

● An alphabet is a set, usually denoted Σ, 
consisting of elements called characters.

● A string over Σ is a finite sequence of zero or 
more characters taken from Σ.

● The empty string has no characters and is 
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

The Language of an Automaton

● If D is a DFA that processes strings over 
Σ, the language of D, denoted (ℒ D), is 
the set of all strings D accepts.

● Formally:

ℒ(D) = { w ∈ Σ* | D accepts w }



  

New Stuff!



  

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }
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More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

Let’s have the a symbol be a placeholder for “some character that 
isn’t a star or slash.”

Let’s design a DFA for C-style comments. Those are the ones
that start with /* and end with */.

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa



  

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }
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Tabular DFAs
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Code‽ In a Theory Class‽

int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}



  

The Regular Languages



  

A language L is called a regular 
language if there exists a DFA D such that 

(ℒ D) = L.
 

If L is a language and (ℒ D) = L, we say 
that D recognizes the language L.



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Good proofwriting 
exercise: prove L̿ = L 
for any language L.



  

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }
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Complementing Regular Languages

L = { w ∈ {a, *, /}* | w represents a C-style comment  }
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Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
       comment  }
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Closure Properties

● Theorem: If L is a regular language, then L is 
also a regular language.

● As a result, we say that the regular languages 
are closed under complementation.

All languages

Regular languages

L

 

L

Question to ponder: 
are the nonregular 

languages closed under 
complementation?



  

NFAs



  

Revisiting a Problem
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NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but 
represents a fundamental shift in how 
we'll think about computation.



  

(Non)determinism

● A model of computation is deterministic if at every 
point in the computation, there is exactly one choice 
that can make.
● The machine accepts if that series of choices leads to an 

accepting state.
● A model of computation is nondeterministic if the 

computing machine has a finite number of choices 
available to make at each point, possibly including zero.

● The machine accepts if any series of choices leads to an 
accepting state.
● (This sort of nondeterminism is technically called existential 

nondeterminism, the most philosophical-sounding term 
we’ll introduce all quarter.)



  

A Simple NFA

q0 q1 q2

start 1
 

1
 

q2

              0, 1

q3

0             0, 1

              0, 1

q0 has two transitions 
defined on 1!



  

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1
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              0, 1

If a NFA needs to make a 
transition when no transition 

exists, the automaton dies and 
that particular path does not 

accept.
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Hello, NFA!
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q2q2q1q1q0q0

start a b

The language of an NFA is
 

ℒ(N) = { w ∈ Σ* | N accepts w }.
 

What is the language of each NFA?
(Assume Σ = {a, b}.)

q1q1q0q0
q2q2q2

start a a q2
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start
q0q0

start
    Σ

{ab}

{ w ∈ Σ* | w ends in aa }

Ø {ε} Σ*

Question to ponder:
Why is the answer

{ w ∈ Σ* | w ends in aaa } 
not correct?

Note that flipping the accept 
and reject states of an NFA 

doesn’t always give an NFA for 
the complement of the original 

language. (Why?)



  

q4q3q3 q5q4 q5
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start a

ε   

a

b

b, ε b

a

ε   

Not at all fun or 
rewarding exercise: 

what is the language of 
this NFA?



  

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

● NFAs are not required to follow ε-transitions. 
It's simply another option at the machine's 
disposal.



  

Time-Out For Announcements!



  

Right
after class!

https://stanford.zoom.us/j/
99396091443?

pwd=WUxRekt2SVppb3JBKzZQ
U3JVTXd1QT09



  

Your Questions



  

“I love all the interesting problems we covered in lectures 
so far, but I sometimes can't relate what we learn in class 

about writing proof and discrete math to the CS 
programming side. I know this is only halfway through 

the quarter, but will it be clearer about what we learn in 
class connect to real programming?”

The content for the rest of this quarter contains a bunch of gems 
that are immediately useful in programming. Automata, for example, 
are used in the design of UI elements, network controllers, compilers 

and interpreters, etc.
 

More generally, the techniques you’ve learned so far – how to 
formalize concepts, edge cases in formal logic, etc. – are surprisingly 
useful in designing complex systems. Building big systems is largely 

about getting the abstractions right. Concepts like functions, graphs, 
and the like are supremely useful here. MapReduce is a good example 
of this, as are the protocols that power the internet. And knowing 
FOL is useful for figuring out what to do in edge cases in systems.



  

Back to CS103!



  

Intuiting Nondeterminism

● Nondeterministic machines are a serious 
departure from physical computers. How 
can we build up an intuition for them?

● There are two particularly useful 
frameworks for interpreting 
nondeterminism:
● Perfect positive guessing
● Massive parallelism



  

Perfect Positive Guessing

● We can view nondeterministic machines as 
having Magic Superpowers that enable them 
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an 

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one 

of the wrong guesses.
● There is no known way to physically model this 

intuition of nondeterminism – this is quite a 
departure from reality!
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accepting state, so there's 
some path that gets us to 

an accepting state.
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state, so no possible path 
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Massive Parallelism

● An NFA can be thought of as a DFA that can be in many 
states at once.

● At each point in time, when the NFA needs to follow a 
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read 
this on your own time).
● Start off in the set of all states formed by taking the start state 

and including each state that can be reached by zero or more
ε-transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a 

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable 

from S’ by following zero or more ε-transitions.



  

Designing NFAs



  

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to 
have? Have the machine nondeterministically guess 
that information.

● Then, have the machine deterministically check that 
the choice was correct.

● The guess phase corresponds to trying lots of 
different options.

● The check phase corresponds to filtering out 
bad guesses or wrong options.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ

Nondeterministically guess when the 
end of the string is coming up.

 

Deterministically check whether you 
were correct.



  

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start  

ε          

ε

ε          

Nondeterministically 
guess which character 

is missing.
 

Deterministically check 
whether that 

character is indeed 
missing.



  

Just how powerful are NFAs?



  

Next Time

● The Powerset Construction
● So beautiful. So elegant. So cool!

● More Closure Properties
● Other set-theoretic operations.

● Language Transformations
● What’s the deal with the notation Σ*?
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