

Finite Automata
Part Two

Recap from Last Time

Formal Language Theory

● An alphabet is a set, usually denoted Σ,
consisting of elements called characters.

● A string over Σ is a finite sequence of zero or
more characters taken from Σ.

● The empty string has no characters and is
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

The Language of an Automaton

● If D is a DFA that processes strings over
Σ, the language of D, denoted (ℒ D), is
the set of all strings D accepts.

● Formally:

ℒ(D) = { w ∈ Σ* | D accepts w }

New Stuff!

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Let’s design a DFA for C-style comments. Those are the ones
that start with /* and end with */.

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*

q4
/q0

/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first row, it's the

start state.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Question to
ponder: Why isn’t
there a column
here for ?Σ

q3

Code‽ In a Theory Class‽

int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}

The Regular Languages

A language L is called a regular
language if there exists a DFA D such that

(ℒ D) = L.

If L is a language and (ℒ D) = L, we say
that D recognizes the language L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Good proofwriting
exercise: prove L̿ = L
for any language L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties

● Theorem: If L is a regular language, then L is
also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Question to ponder:
are the nonregular

languages closed under
complementation?

NFAs

Revisiting a Problem

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

● A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.
● The machine accepts if that series of choices leads to an

accepting state.
● A model of computation is nondeterministic if the

computing machine has a finite number of choices
available to make at each point, possibly including zero.

● The machine accepts if any series of choices leads to an
accepting state.
● (This sort of nondeterminism is technically called existential

nondeterminism, the most philosophical-sounding term
we’ll introduce all quarter.)

A Simple NFA

q0 q1 q2

start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two transitions
defined on 1!

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1

1

q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path does not

accept.

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

start a b

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of each NFA?
(Assume Σ = {a, b}.)

q1q1q0q0
q2q2q2

start a a q2

 a, b

q0

start
q0q0

start
q0q0

start
 Σ

{ab}

{ w ∈ Σ* | w ends in aa }

Ø {ε} Σ*

Question to ponder:
Why is the answer

{ w ∈ Σ* | w ends in aaa }
not correct?

Note that flipping the accept
and reject states of an NFA

doesn’t always give an NFA for
the complement of the original

language. (Why?)

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

Not at all fun or
rewarding exercise:

what is the language of
this NFA?

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Time-Out For Announcements!

Right
after class!

https://stanford.zoom.us/j/
99396091443?

pwd=WUxRekt2SVppb3JBKzZQ
U3JVTXd1QT09

Your Questions

“I love all the interesting problems we covered in lectures
so far, but I sometimes can't relate what we learn in class

about writing proof and discrete math to the CS
programming side. I know this is only halfway through

the quarter, but will it be clearer about what we learn in
class connect to real programming?”

The content for the rest of this quarter contains a bunch of gems
that are immediately useful in programming. Automata, for example,
are used in the design of UI elements, network controllers, compilers

and interpreters, etc.

More generally, the techniques you’ve learned so far – how to
formalize concepts, edge cases in formal logic, etc. – are surprisingly
useful in designing complex systems. Building big systems is largely

about getting the abstractions right. Concepts like functions, graphs,
and the like are supremely useful here. MapReduce is a good example
of this, as are the protocols that power the internet. And knowing
FOL is useful for figuring out what to do in edge cases in systems.

Back to CS103!

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect positive guessing
● Massive parallelism

Perfect Positive Guessing

● We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one

of the wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₃

We’re not in any accepting
state, so no possible path

accepts.

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read
this on your own time).
● Start off in the set of all states formed by taking the start state

and including each state that can be reached by zero or more
ε-transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

Designing NFAs

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

● Then, have the machine deterministically check that
the choice was correct.

● The guess phase corresponds to trying lots of
different options.

● The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Just how powerful are NFAs?

Next Time

● The Powerset Construction
● So beautiful. So elegant. So cool!

● More Closure Properties
● Other set-theoretic operations.

● Language Transformations
● What’s the deal with the notation Σ*?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

