Finite Automata

Part Three

Recap from Last Time

Tabular DFAs
0

1
0 1
///////””’>;k(20 (11 (ZO
These sTars dq, 4; 4,
indicate accepting

sTates, q2 CZ3 qO

Tabular DFAs

0

1
SORONORG
AN 2
1
0O 1
/»*qo q, 4,
Since This is the d, 4; 4,
first vow, it's the
sTart sfate. q2 CZ3 qO
*q, q, 4,

If D is a DFA, the language of D, denoted
F(D),is{ we 2*|D accepts w }.

A language L is called a regular language
if there exists a DFA D such that ¥(D) = L.

N FASs

* An NFA is a

e Nondeterministic
 Finite
 Automaton

 Can have missing transitions or multiple
transitions defined on the same input
symbol.

» Accepts if any possible series of choices
leads to an accepting state.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

Massive Parallelism

 An NFA can be thought of as a DFA that
can be in many states at once.

* At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

« The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.

Just how powerful are NFAs?

New Stuff!

NFAs and DFAs

 Any language that can be accepted by a
DFA can be accepted by an NFA.

« Why?
 Every DFA essentially already is an NFA!

* Question: Can any language accepted by
an NFA also be accepted by a DFA?

* Surprisingly, the answer is yes!

Thought Experiment:
How would you simulate an NFA in
software?

[~

{qo} {qo, q1}

2

{qo} 1qo, q1} {qo}

2

{qo} 1qo, q1} {qo}

2

{qo} 1qo, q1} {qo}

2

{qo} 1qo, q1} {qo}

{qo, q1}

{qo}

{qo, q1}

{qo}

{qo, q1}

{qo}

{qo, q1}

{qo}

{qo, q1}

2

{qo} 1qo, q1} {qo}

{qo, q1}

2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1}

{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}

{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}

2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}

2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3}

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

{qo, q1, q3}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[{qo, q2}

\ d

b T{qo, qs, q:a}]

h

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[{qo, q2}

\ d

b T{qo, qs, q:a}]

h

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ{ {qo} } a >[{qo, qi}
\ b

[{qo, q2}

\ d

b T{qo, qs, q:a}]

h

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ’[{qo} } 9 ’[{qo, q1}
\ ib a
N\ a

[140, CIZ}L b T[{CIO,CILCISH]

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ’[{qo} } 9 ’[{qo, q1}
\ ib a
N\ a

[140, CIZ}L b T[{CIO,CILCISH]

2

b a a b a

b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]

a
L1

EEE L

[{qo, CIZ}L : T[{CIO,CILCISH]

b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]

b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : >[[{qo,ql,qs}]]

b a
R | 4

start (o) } a ’[{Qo,]
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]

b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]

The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

« Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.

The Subset Construction

In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

Useful fact: |»(S)| = 215 for any finite set S.

In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2"?

A language L is called a regular language
if there exists a DFA D such that ¥(D) = L.

An Important Result

Theorem: A language L is regular if and only if
there is some NFA N such that ¥(N) = L.

Proof Sketch: Pick a language L. First, assume
L is regular. That means there’s a DFA D where
$(D) = L. Every DFA is “basically” an NFA, so
there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that

Y (N) = L. Using the subset construction, we
can build a DFA D where ¥(N) = £(D). Then
we have that (D) = L, so L is regular. l-ish

Why This Matters

« We now have two perspectives on regular
languages:

 Regular languages are languages accepted
by DFAs.

 Regular languages are languages accepted
by NFAs.

 We can now reason about the regular
languages in two different ways.

Time-Out for Announcements!

75% Percentile: 60 / 65 (92%)
50t Percentile: 535 / 85 (85%)

Problem Set Four Grades
25% Percentile: 48 / 85 (74%)

38 - 41 42 - 45 46 - 49 50 - 53 54 - 57 58 - 61 62 - 65

Many of these grades are because folks
forgot to list partners - please check to
make sure you’'re getting credit for the
work you’re doing, and let us know if
your partner forgot to add you.

Problem Set Six

e Problem Set Five was due at 2:30PM
today.

* Problem Set Six goes out today. It’s due
next Friday at 2:30PM.

* Design DFAs and NFAs for a range of
problems!

« Explore formal language theory!
 See some clever applications!

Second Midterm Logistics

e Our second midterm exam is a 49-hour take-home exam
that goes out next Friday (November 5%*) at 2:30PM and
comes due next Sunday (November 7%) at 2:30PM Pacific
time.

« It’s 49 hours long because of the switch to Daylight Saving Time.

» Topic coverage is PS3 - PS5 and lectures 07 - 13 (functions
through induction). Later topics (automata, formal
languages) won’t be tested. Earlier topics are fair game for
the exam, since the material in this class builds on itself.

« We’ve released Extra Practice Problems 2, a collection of 18
problems with solutions, to the course website to help you
prepare.

* And always, keep the TAs in the loop! Let us know what we
can do to help out.

X

Three Questions

 What’s something you know now that, at
the start of the quarter, you knew you didn’t
know?

 What’s something you know now that, at
the start of the quarter, you didn’t know you
didn’t know?

 What’s something you don’t know now that,
at the start of the quarter, you didn’t know
you didn’t know?

Your Questions

Yorr-Ounestens

NexT Time, because 1
tforgot 1o set fhat
up today, 0ops,

Back to CS103!

Properties of Regular Languages

The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?

The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?

S t,(i> Machine for L,
S rt_Cj’\» Machine for L,

The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?

S t,(i> Machine for L,
S rtG’\» Machine for L,

start ,O

The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?

& Machine for L,

start

Machine for L,

The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?

L 4 ~

Question to
ponder: where have
you seen this idea
before?

Machine for L

1

start

Machine for Machine for L

L UL,

2

L J L 4

------------’

The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L.,

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L.,

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

Hey, iT's De
Morgan's laws:

Concatenation

String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

« Example: if w = quo and x = kka, the concatenation
wXx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
« Some facts about concatenation:
 The empty string ¢ is the identity element for concatenation:
WE = EW =W
 Concatenation is associative:
wxy = w(xy) = (wx)y

Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lilz ={wx€X*¥|w€Li1AXx€ELz2}

Concatenation Example

eletX={a b, ..., z A B, ... Z} and consider
these languages over X:

* Noun = { Puppy, Rainbow, Whale, ... }
 Verb = { Hugs, Juggles, Loves, ... }
e The = { The }

 The language TheNounVerbTheNoun is

 { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }

Concatenation

 The concatenation of two languages L1 and L
over the alphabet X is the language

Lilz ={wx €X*|we€LiAx€L:z2}
» Two views of LiLz:

« The set of all strings that can be made by concatenating
a string in Li with a string in L.

 The set of strings that can be split into two pieces: a
piece from Li1 and a piece from L.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian
products? In what ways are they
different?

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

S rt,()JJ'> S rt_@»

Machine for L, Machine for L,

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

S rt,()JJ'> S rt_(j;»

Machine for L, Machine for L,

b o o k k e e p e r

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

S rt,()JJ'> S rt_(j;»

Machine for L, Machine for L,

b o o k Kk e e p e r

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

S rt,()JJ'> S rt_(j;»

Machine for L, Machine for L,

b o o Kk k e e p e r

Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

e Idea:
- Run a DFA/NFA for L, on w.

« Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L,.

- If the automaton for L, accepts the rest, w € LiLo.

- If the automaton for L, rejects the remainder, the split
was incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

O

start @
O

Machine for
L

1

Concatenating Regular Languages

start _C%
start @

@ Machine for

L

Machine for ’

L

1

Concatenating Regular Languages

start {

Machme for
L

Machine for ’

L

1

Concatenating Regular Languages

o

‘ Machine for
L

Machine for ’

L

1

Concatenating Regular Languages

‘—_---.
L g N
L 4 &

.0
% - O
wi ()" C

~~~~~
-----------------------------------------------------------------

Machine for L.L,



[.ots and Lots of Concatenation

« Consider the language L. = { aa, b }

« LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

* LY = 1€}

 Intuition: The only string you can form by gluing no
strings together is the empty string.

 Notice that {e} # . Can you explain why?
o Ln+1 = [.I"

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define L° = {€}?
* Question to ponder: What is 9°?



The Kleene Star



The Kleene Closure

 An important operation on languages is the
Kleene Closure, which is defined as

L*={weZXZ* | dne€ N.welL"}
« Mathematically:
weEL* o dne€ N.welL"

 Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

* Question to ponder: What is O*?



The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as The set of sfrings you
can make if you have a collection of
sfamps - one for each string in L -
and you torm every possible sfring
that can be made from those stamps,




Reasoning about Infinity

» If L is reqgular, is L* necessarily regular?

. A Bad Line of Reasoning:
e [={ ¢} isreqgular.
« [.1 =L is reqgular.
« .- = LL is regular
e [° = L(LL) is regular

 Regular languages are closed under union.

* So the union of all these languages is
regular.



Reasoning about Infinity



Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity




Reasoning about Infinity

09<1



Reasoning about Infinity

0.99 < 1



Reasoning about Infinity

0.999 <1



Reasoning about Infinity

0.9999 < 1



Reasoning about Infinity

0.99999 < 1



Reasoning about Infinity

0.99999 < 1



Reasoning about Infinity

O is finite



Reasoning about Infinity

1 is finite



Reasoning about Infinity

2 1s finite



Reasoning about Infinity

3 is finite



Reasoning about Infinity

4 is finite



Reasoning about Infinity

oo 1S finite
" not



Reasoning About the Infinite

 If a series of finite objects all have some
property, the “limit” of that process does not
necessarily have that property.

* In general, it is not safe to conclude that some
property that always holds in the finite case
must hold in the infinite case.

* (This is why calculus is interesting).

 So our earlier argument (L* =L° U Lt U ...) isn’t
going to work.

 We need a different line of reasoning.



Idea: Can we directly convert an NFA for
language L to an NFA for language L*?



The Kleene Star

5 Op

O

Machine for L




The Kleene Star

o 5 0O
0

Machine for L



The Kleene Star

g 5 0O
0

Machine for L



start

The Kleene Star

Machine for L



start

The Kleene Star

Machine for L



The Kleene Star

...................................................
- LS
g 2N

start O

.~ .
.-----------------------------------------------‘

Machine for L*



The Kleene Star

start :

S ~L
Question: Why add the new | '
sfate out front? Why not

just make the old start
stale accepting?

~.---------------------------------

Machine for L

l 4
----------------------------------

achine for L*




Closure Properties

» Theorem: If L. and L2 are regular
languages over an alphabet X, then so are
the following languages:

e I1
e [1 U L[>
e [1NL>
e [1l.>
° Ll*
 These properties are called closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

 From machines to programs!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179

