Finite Automata

Part Three



Recap from Last Time
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If D is a DFA, the language of D, denoted
F(D),is{ we 2*|D accepts w }.

A language L is called a regular language
if there exists a DFA D such that ¥(D) = L.



N FASs

* An NFA is a

e Nondeterministic
 Finite
 Automaton

 Can have missing transitions or multiple
transitions defined on the same input
symbol.

» Accepts if any possible series of choices
leads to an accepting state.



e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.




Massive Parallelism

 An NFA can be thought of as a DFA that
can be in many states at once.

* At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

« The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.



Just how powerful are NFAs?



New Stuff!



NFAs and DFAs

 Any language that can be accepted by a
DFA can be accepted by an NFA.

« Why?
 Every DFA essentially already is an NFA!

* Question: Can any language accepted by
an NFA also be accepted by a DFA?

* Surprisingly, the answer is yes!



Thought Experiment:
How would you simulate an NFA in
software?





































































[~

{qo} {qo, q1}













2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}













2

{qo} 1qo, q1} {qo}

{qo, q1}




2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}













2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2}






















2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}













2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3}




{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

{qo, q1, q3}
















2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}
















2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, q2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, q2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, q2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ’[ {qo} } 9 ’[ {qo, q1}
\ ib a
N\ a

[ 140, CIZ}L b T[{CIO,CILCISH]




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ’[ {qo} } 9 ’[ {qo, q1}
\ ib a
N\ a

[ 140, CIZ}L b T[{CIO,CILCISH]










2

b a a b a

b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[ {qo, CIZ}L : T[{CIO,CILCISH]




a
L1

EEE L

[ {qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[ {qo, CIZ}L : >[[{qo,ql,qs}]]




b a
R | 4

start (o) } a ’[{Qo, ]
\ ib a

[ {qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a >[{qo, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]







The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

« Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.



The Subset Construction

In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

Useful fact: |»(S)| = 215 for any finite set S.

In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2"?



A language L is called a regular language
if there exists a DFA D such that ¥(D) = L.



An Important Result

Theorem: A language L is regular if and only if
there is some NFA N such that ¥(N) = L.

Proof Sketch: Pick a language L. First, assume
L is regular. That means there’s a DFA D where
$(D) = L. Every DFA is “basically” an NFA, so
there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that

Y (N) = L. Using the subset construction, we
can build a DFA D where ¥(N) = £(D). Then
we have that (D) = L, so L is regular. l-ish



Why This Matters

« We now have two perspectives on regular
languages:

 Regular languages are languages accepted
by DFAs.

 Regular languages are languages accepted
by NFAs.

 We can now reason about the regular
languages in two different ways.



Time-Out for Announcements!



75% Percentile: 60 / 65 (92%)
50t Percentile: 535 / 85 (85%)

Problem Set Four Grades
25% Percentile: 48 / 85 (74%)

38 - 41 42 - 45 46 - 49 50 - 53 54 - 57 58 - 61 62 - 65

Many of these grades are because folks
forgot to list partners - please check to
make sure you’'re getting credit for the
work you’re doing, and let us know if
your partner forgot to add you.




Problem Set Six

e Problem Set Five was due at 2:30PM
today.

* Problem Set Six goes out today. It’s due
next Friday at 2:30PM.

* Design DFAs and NFAs for a range of
problems!

« Explore formal language theory!
 See some clever applications!



Second Midterm Logistics

e Our second midterm exam is a 49-hour take-home exam
that goes out next Friday (November 5%*) at 2:30PM and
comes due next Sunday (November 7%) at 2:30PM Pacific
time.

« It’s 49 hours long because of the switch to Daylight Saving Time.

» Topic coverage is PS3 - PS5 and lectures 07 - 13 (functions
through induction). Later topics (automata, formal
languages) won’t be tested. Earlier topics are fair game for
the exam, since the material in this class builds on itself.

« We’ve released Extra Practice Problems 2, a collection of 18
problems with solutions, to the course website to help you
prepare.

* And always, keep the TAs in the loop! Let us know what we
can do to help out.



X







Three Questions

 What’s something you know now that, at
the start of the quarter, you knew you didn’t
know?

 What’s something you know now that, at
the start of the quarter, you didn’t know you
didn’t know?

 What’s something you don’t know now that,
at the start of the quarter, you didn’t know
you didn’t know?



Your Questions
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Back to CS103!



Properties of Regular Languages



The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?
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The Union of Two Languages

- If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at least
one of the two languages.

- If L, and L, are regular languages, is L, U L,?
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ponder: where have
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before?
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The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L.,

e Question: If L, and L, are regular, is L, N L,
regular as well?
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The Intersection of Two Languages

- If L. and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

Hey, iT's De
Morgan's laws:




Concatenation



String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

« Example: if w = quo and x = kka, the concatenation
wXx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
« Some facts about concatenation:
 The empty string ¢ is the identity element for concatenation:
WE = EW =W
 Concatenation is associative:
wxy = w(xy) = (wx)y



Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lilz ={wx€X*¥|w€Li1AXx€ELz2}



Concatenation Example

eletX={a b, ..., z A B, ... Z} and consider
these languages over X:

* Noun = { Puppy, Rainbow, Whale, ... }
 Verb = { Hugs, Juggles, Loves, ... }
e The = { The }

 The language TheNounVerbTheNoun is

 { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }



Concatenation

 The concatenation of two languages L1 and L
over the alphabet X is the language

Lilz ={wx €X*|we€LiAx€L:z2}
» Two views of LiLz:

« The set of all strings that can be made by concatenating
a string in Li with a string in L.

 The set of strings that can be split into two pieces: a
piece from Li1 and a piece from L.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian
products? In what ways are they
different?




Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?
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Concatenating Regular Languages

- If L. and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings
xysuchthatx e L, andy € L,?

e Idea:
- Run a DFA/NFA for L, on w.

« Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L,.

- If the automaton for L, accepts the rest, w € LiLo.

- If the automaton for L, rejects the remainder, the split
was incorrect.



Concatenating Regular Languages
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Concatenating Regular Languages
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[.ots and Lots of Concatenation

« Consider the language L. = { aa, b }

« LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

* LY = 1€}

 Intuition: The only string you can form by gluing no
strings together is the empty string.

 Notice that {e} # . Can you explain why?
o Ln+1 = [.I"

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define L° = {€}?
* Question to ponder: What is 9°?



The Kleene Star



The Kleene Closure

 An important operation on languages is the
Kleene Closure, which is defined as

L*={weZXZ* | dne€ N.welL"}
« Mathematically:
weEL* o dne€ N.welL"

 Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

* Question to ponder: What is O*?



The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as The set of sfrings you
can make if you have a collection of
sfamps - one for each string in L -
and you torm every possible sfring
that can be made from those stamps,




Reasoning about Infinity

» If L is reqgular, is L* necessarily regular?

. A Bad Line of Reasoning:
e [={ ¢} isreqgular.
« [.1 =L is reqgular.
« .- = LL is regular
e [° = L(LL) is regular

 Regular languages are closed under union.

* So the union of all these languages is
regular.



Reasoning about Infinity
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Reasoning About the Infinite

 If a series of finite objects all have some
property, the “limit” of that process does not
necessarily have that property.

* In general, it is not safe to conclude that some
property that always holds in the finite case
must hold in the infinite case.

* (This is why calculus is interesting).

 So our earlier argument (L* =L° U Lt U ...) isn’t
going to work.

 We need a different line of reasoning.



Idea: Can we directly convert an NFA for
language L to an NFA for language L*?
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Closure Properties

» Theorem: If L. and L2 are regular
languages over an alphabet X, then so are
the following languages:

e I1
e [1 U L[>
e [1NL>
e [1l.>
° Ll*
 These properties are called closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

 From machines to programs!
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