Finite Automata

Part Three
Recap from Last Time
Tabular DFAs

These stars indicate accepting states.
Tabular DFAs

Since this is the first row, it’s the start state.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
If D is a DFA, the *language of $D*$, denoted $\mathcal{L}(D)$, is \{ $w \in \Sigma^* \mid D$ accepts w \}.

A language L is called a *regular language* if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- The NFA accepts if \textit{any} of the states that are active at the end are accepting states. It rejects otherwise.
Just how powerful *are* NFAs?
New Stuff!
NFAs and DFAs

• Any language that can be accepted by a DFA can be accepted by an NFA.

• Why?
 • Every DFA essentially already is an NFA!

• *Question*: Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is *yes*!
Thought Experiment:
How would you simulate an NFA in software?
\begin{itemize}
\item start
\item q_0
\item q_1
\item q_2
\item q_3
\end{itemize}

Σ

a \rightarrow b \rightarrow a \rightarrow b \rightarrow a

a b a b a b a
\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\begin{align*}
\sum & \xrightarrow{\text{start}} q_0
\end{align*}
start

\[
\begin{align*}
q_0 &\xrightarrow{a} q_1 \\
q_1 &\xrightarrow{b} q_2 \\
q_2 &\xrightarrow{a} q_3
\end{align*}
\]

\[
\Sigma
\]

\[
\begin{array}{|c|c|}
\hline
\{ q_0 \} & \{ q_0, q_1 \} \\
\hline
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a transition table where:

- \(q_0\) is the start state.
- The transitions are:
 - \(q_0\) to \(q_1\) on input \(a\).
 - \(q_1\) to \(q_2\) on input \(b\).
 - \(q_2\) to \(q_3\) on input \(a\).

The states are connected with arrows indicating the transitions with inputs \(a\) and \(b\).
\(\Sigma \)

- \(q_0 \) is the start state.
- \(q_1 \) is reached by reading 'a' from \(q_0 \).
- \(q_2 \) is reached by reading 'b' from \(q_1 \).
- \(q_3 \) is reached by reading 'a' from \(q_2 \).

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table assumes \(q_0 \) is the initial state and \(q_3 \) is a final state.
\[q_0 \xrightarrow{\Sigma} q_3\]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\hline
\end{array}
\]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>

The diagram shows a finite automaton with states \(q_0 \), \(q_1 \), \(q_2 \), and \(q_3 \), and transitions labeled with symbols a and b.

- From \(q_0 \) on a, transition to \(q_1 \).
- From \(q_1 \) on b, transition to \(q_2 \).
- From \(q_2 \) on a, transition back to \(q_3 \) (a loop).
- From \(q_3 \) on \(\Sigma \), transition back to \(q_0 \).
\begin{align*}
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{|c|c|c|}
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\hline
\hline
\hline
\hline
\end{array}
\end{align*}
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\Sigma &
\end{align*}
\]

\[
\begin{array}{c|cc}
 & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
\end{array}
\]
\[
\begin{align*}
q_0 & \xrightarrow{\Sigma} q_0 \\
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]
\[
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \\
\{q_0\} & & \\
\hline
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
</tbody>
</table>

Diagram:

- **Start State:** \(q_0\)
- **Transitions:**
 - \(q_0\) on \(a\) to \(q_1\)
 - \(q_1\) on \(b\) to \(q_2\)
 - \(q_2\) on \(a\) to \(q_3\)
 - \(q_3\) is a trap state
\begin{align*}
\text{start} & \quad \rightarrow \quad q_0 \quad \xrightarrow{a} \quad q_1 \quad \xrightarrow{b} \quad q_2 \quad \xrightarrow{a} \quad q_3 \\
\Sigma & \quad \xrightarrow{\text{a}} \quad \{q_0, q_1\} \quad \xrightarrow{\text{b}} \quad \{q_0, q_2\}
\end{align*}
\[\sum \]

\[
\begin{array}{ccc}
\text{start} & \rightarrow q_0 & \rightarrow q_1 & \rightarrow q_2 & \rightarrow q_3 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & & \\
\end{array}
\]
\[
\Sigma
\]

\[
\begin{array}{|c|c|c|}
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & & \\
\hline
\end{array}
\]
\[\begin{array}{c|cc|c|c} \{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\ \hline \{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\ \hline \{ q_0, q_2 \} & & & \end{array} \]
\[\Sigma \]

- **Start**: \(q_0 \)
- **Transition**:
 - \(a \): \(q_0 \rightarrow q_1 \)
 - \(b \): \(q_1 \rightarrow q_2 \)
 - \(a \): \(q_2 \rightarrow q_3 \)

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td></td>
</tr>
</tbody>
</table>

- Green states indicate accepting states.
\begin{array}{|c|c|c|}
\hline
\text{a} & \text{b} \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \text{---} \\
\hline
\end{array}
\[
\begin{array}{c|c|c}
\text{state} & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\hline
\end{array}
\]
Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_3})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
</tbody>
</table>
The automaton has states labeled q_0, q_1, q_2, and q_3. The initial state is q_0. The transitions are as follows:

- From q_0 on input a, go to q_1.
- From q_1 on input b, go to q_2.
- From q_2 on input a, go to q_3 (a loop).

The states are partitioned into sets for each input:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The input alphabet Σ is also shown in the diagram.
\begin{align*}
\Sigma \quad \{q_0\} & \quad \{q_0, q_1\} & \quad \{q_0\} \\
\{q_0, q_1\} & \quad \{q_0, q_1\} & \quad \{q_0, q_2\} \\
\{q_0, q_2\} & \quad \{q_0, q_1, q_3\} & \quad \{q_0\} \\
\{q_0, q_1, q_3\} & \quad \quad & \quad \\
\end{align*}
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\begin{array}{c|c|c}
\text{q}_0 & \text{a} & \text{b} \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & \{ q_0, q_1 \} \\
\end{array} \]
\[\begin{array}{ccc}
\text{state} & \text{a} & \text{b} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array} \]
\[
\begin{array}{c}
\text{start} \\
q_0 \\
\text{a} \\
q_1 \\
\text{b} \\
q_2 \\
\text{a} \\
q_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \text{\textit{}} \\
\hline
\end{array}
\]
\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{c|c|c}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & \{ q_0, q_1 \} & \\
\end{array} \]
\[\begin{array}{c|c|c}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\end{array} \]
The image contains a finite automaton (FA) diagram with states labeled q_0, q_1, q_2, and q_3. The transitions are labeled with symbols a and b. Below the diagram, there is a transition table showing the states for a and b.

Transition Table

<table>
<thead>
<tr>
<th>States</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>

The FA starts in state q_0.
\[
\begin{array}{ccc}
\Sigma & a & b \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
*\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0, q_2\}
\end{array}
\]
\[
\begin{align*}
\Sigma & \quad \text{start} \\
q_0 & \quad a \quad q_1 \\
q_1 & \quad b \quad q_2 \\
q_2 & \quad a \quad q_3 \\
\end{align*}
\]
The given diagram represents a deterministic finite automaton (DFA) with states \(q_0, q_1, q_2, q_3\), transitions, and an input alphabet \(\Sigma\). The transitions are as follows:

- From \(q_0\) to \(q_1\) on input \(a\)
- From \(q_1\) to \(q_2\) on input \(b\)
- From \(q_2\) to \(q_3\) on input \(a\)
- From \(q_3\) to \(q_0\) on input \(\Sigma\)

The DFA accepts the string \(aba\) starting from the initial state \(q_0\). The diagram also illustrates the transition of states for the input string, showing the progression through the DFA's states.

The transitions are represented as follows:

1. \(q_0 \xrightarrow{a} q_1\)
2. \(q_1 \xrightarrow{b} q_2\)
3. \(q_2 \xrightarrow{a} q_3\)
4. \(q_3 \xrightarrow{\Sigma} q_0\)

The states are labeled with sets of states, indicating the current set of states the DFA is in at each transition. The input string \(aba\) starts the process from \(q_0\) and transitions through the states \(q_0, q_1, q_2, q_3\), ending at \(q_3\) with the final set \(\{q_0, q_1, q_3\}\).
The Subset Construction

- This procedure for turning an NFA for a language \(L \) into a DFA for a language \(L \) is called the \textit{subset construction}.
 - It’s sometimes called the \textit{powerset construction}; it’s different names for the same thing!

- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

- There’s an online \textit{Guide to the Subset Construction} with a more elaborate example involving \(\varepsilon \)-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

- **Useful fact:** \(|\mathcal{P}(S)| = 2^{|S|}\) for any finite set \(S\).

- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.

- **Question to ponder:** Can you find a family of languages that have NFAs of size \(n\), but no DFAs of size less than \(2^n\)?
A language L is called a \textit{regular language} if there exists a DFA D such that $\mathcal{L}(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

• We now have two perspectives on regular languages:
 • Regular languages are languages accepted by DFAs.
 • Regular languages are languages accepted by NFAs.
• We can now reason about the regular languages in two different ways.
Time-Out for Announcements!
Many of these grades are because folks forgot to list partners – please check to make sure you’re getting credit for the work you’re doing, and let us know if your partner forgot to add you.
Problem Set Six

- Problem Set Five was due at 2:30PM today.
- Problem Set Six goes out today. It’s due next Friday at 2:30PM.
 - Design DFAs and NFAs for a range of problems!
 - Explore formal language theory!
 - See some clever applications!
Second Midterm Logistics

- Our second midterm exam is a 49-hour take-home exam that goes out next Friday (November 5th) at 2:30PM and comes due next Sunday (November 7th) at 2:30PM Pacific time.
 - It’s 49 hours long because of the switch to Daylight Saving Time.
- Topic coverage is PS3 – PS5 and lectures 07 – 13 (functions through induction). Later topics (automata, formal languages) won’t be tested. Earlier topics are fair game for the exam, since the material in this class builds on itself.
- We’ve released Extra Practice Problems 2, a collection of 18 problems with solutions, to the course website to help you prepare.
- And always, keep the TAs in the loop! Let us know what we can do to help out.
Three Questions

● What’s something you know now that, at the start of the quarter, you knew you didn’t know?

● What’s something you know now that, at the start of the quarter, you didn’t know you didn’t know?

● What’s something you don’t know now that, at the start of the quarter, you didn’t know you didn’t know?
Your Questions
Your Questions

Next time, because I forgot to set that up today. Oops.
Back to CS103!
Properties of Regular Languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ regular?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Machine for L_1

Machine for L_2
The Union of Two Languages

- If \(L_1 \) and \(L_2 \) are languages over the alphabet \(\Sigma \), the language \(L_1 \cup L_2 \) is the language of all strings in at least one of the two languages.
- If \(L_1 \) and \(L_2 \) are regular languages, is \(L_1 \cup L_2 \)?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Question to ponder: where have you seen this idea before?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.
- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.
- This is analogous to the + operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation:
 $$w\varepsilon = \varepsilon w = w$$
 - Concatenation is *associative*:
 $$wxy = w(xy) = (wx)y$$
Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ \, wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \, \}$$
Concatenation Example

- Let $\Sigma = \{ a, b, \ldots, z, A, B, \ldots, Z \}$ and consider these languages over Σ:
 - $Noun = \{ \text{Puppy, Rainbow, Whale, \ldots} \}$
 - $Verb = \{ \text{Hugs, Juggles, Loves, \ldots} \}$
 - $The = \{ \text{The} \}$

- The language $\text{TheNounVerbTheNoun}$ is
 - $\{ \text{ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, \ldots} \}$
Concatenation

• The concatenation of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* | w \in L_1 \land x \in L_2 \}$$

• Two views of L_1L_2:
 • The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 • The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

This is closely related to, but different than, the Cartesian product.

Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

![Machine for L_1](image1)

![Machine for L_2](image2)

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?

- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

- **Idea:**
 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for L_1L_2
Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L.
 \[
 \{ \text{aaaa, aab, baa, bb} \}
 \]
- LLL is the set of strings formed by concatenating triples of strings in L.
 \[
 \{ \text{aaaaaa, aaab, aabaa, aabb, baaaa, baab, bbbaa, bbb} \}
 \]
- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.
 \[
 \{ \text{aaaaaaaa, aaaaaab, aaaaaba, aaaaa, aaaaa, aabaab, aabbaa, aabbb, baaaaa, baaaaab, baabaa, baabb, bbaaaa, bbaaab, bbbbaa, bbbb} \}
 \]
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
 - \(L^0 = \{ \varepsilon \} \)
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that \(\{ \varepsilon \} \neq \emptyset \). Can you explain why?
 - \(L^{n+1} = LL^n \)
 - Idea: Concatenating \((n+1)\) strings together works by concatenating \(n\) strings, then concatenating one more.

- **Question to ponder:** Why define \(L^0 = \{ \varepsilon \} \)?
- **Question to ponder:** What is \(\emptyset^0 \)?
The Kleene Star
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as
 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

- Mathematically:
 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

- Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

- **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If $L = \{ a, bb \}$, then $L^* = \{ \epsilon, a, bb, aa, abb, bba, bbb, aab, abba, aabb, abbb, bbaa, bbabb, bbbba, bbbbbbb, \ldots \}$

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.
Reasoning about Infinity

- If L is regular, is L^* necessarily regular?

 A Bad Line of Reasoning:
 - $L^0 = \{ \varepsilon \}$ is regular.
 - $L^1 = L$ is regular.
 - $L^2 = LL$ is regular
 - $L^3 = L(LL)$ is regular
 - ...
 - Regular languages are closed under union.
 - So the union of all these languages is regular.
Reasoning about Infinity

\[\chi \}

\[\chi \]
Reasoning about Infinity

\[x \neq 2x \]
Reasoning about Infinity

$0.9 < 1$
Reasoning about Infinity

0.99 < 1
Reasoning about Infinity

0.999 < 1
Reasoning about Infinity

0.99999 < 1
Reasoning about Infinity

0.99999 < 1
Reasoning about Infinity

$0.9999\bar{9} \neq 1$
Reasoning about Infinity

0 is finite
Reasoning about Infinity

1 is finite
Reasoning about Infinity

2 is finite
Reasoning about Infinity

3 is finite
Reasoning about Infinity

4 is finite
Reasoning about Infinity

\[\infty \text{ is finite} \]

\[^{\text{not}}\]
Reasoning About the Infinite

• If a series of finite objects all have some property, the “limit” of that process does not necessarily have that property.

• In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 • (This is why calculus is interesting).

• So our earlier argument ($L^* = L^0 \cup L^1 \cup \ldots$) isn’t going to work.

• We need a different line of reasoning.
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L
The Kleene Star

Machine for L
The Kleene Star
The Kleene Star

Machine for L
The Kleene Star

Machine for \(L \)
The Kleene Star

Machine for L

Machine for L^*
Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $\overline{L_1}$
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called closure properties of the regular languages.
Next Time

- **Regular Expressions**
 - Building languages from the ground up!
- **Thompson’s Algorithm**
 - A UNIX Programmer in Theoryland.
- **Kleene’s Theorem**
 - From machines to programs!