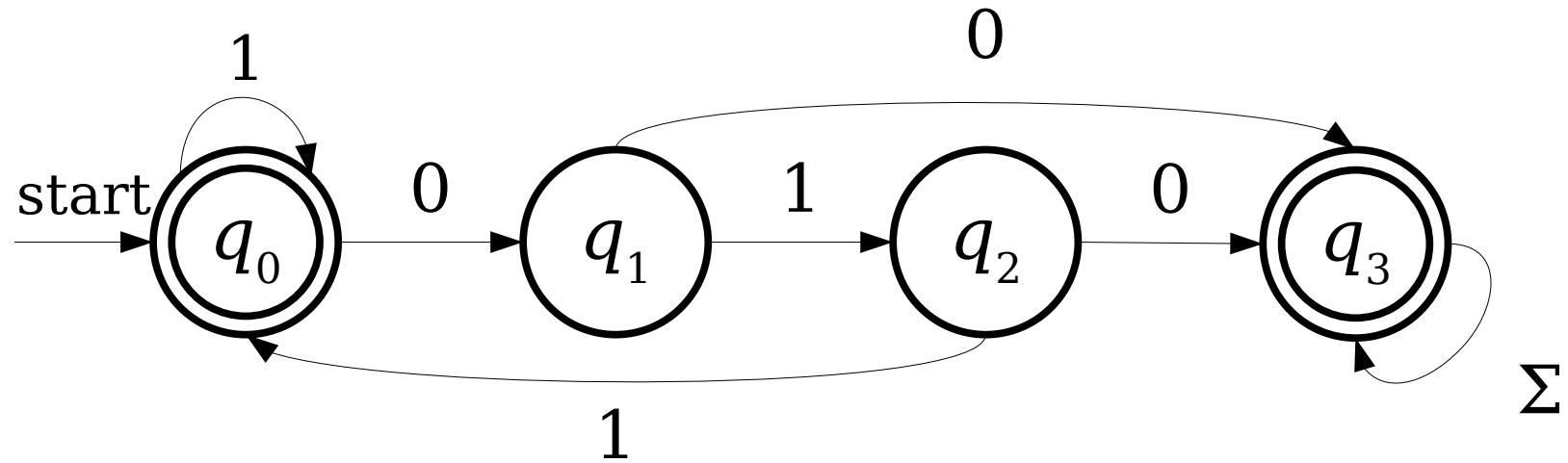


Finite Automata

Part Three

Recap from Last Time

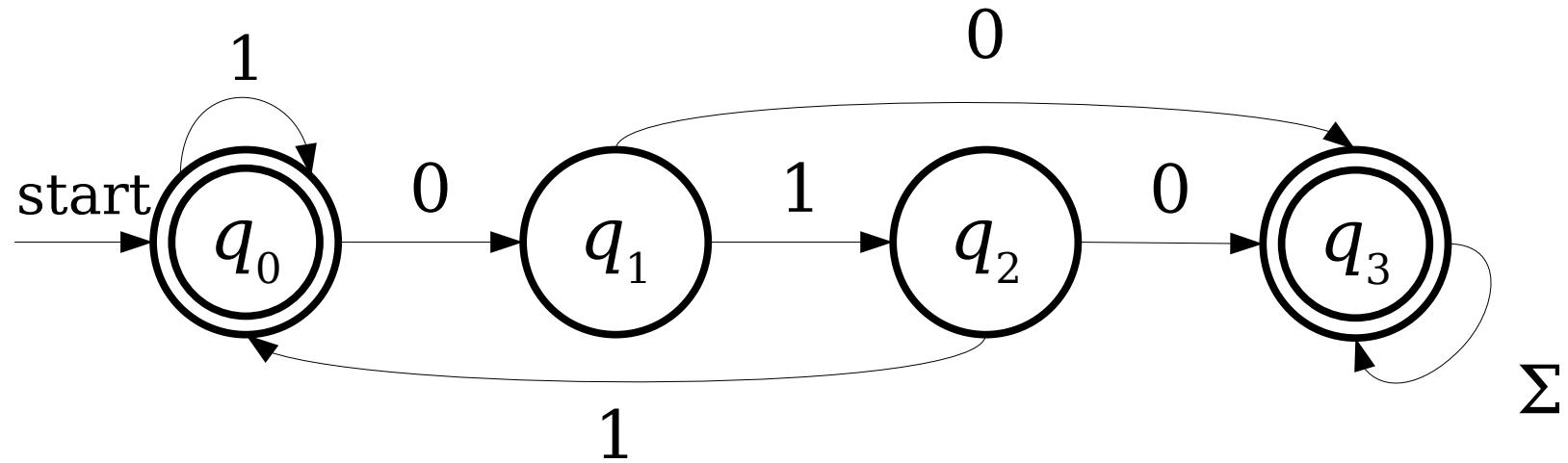
Tabular DFAs



These stars indicate accepting states.

	0	1
$*q_0$	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
$*q_3$	q_3	q_3

Tabular DFAs



	0	1
$*q_0$	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
$*q_3$	q_3	q_3

Since this is the first row, it's the start state.

If D is a DFA, the ***language of D*** , denoted $\mathcal{L}(D)$, is $\{ w \in \Sigma^* \mid D \text{ accepts } w \}$.

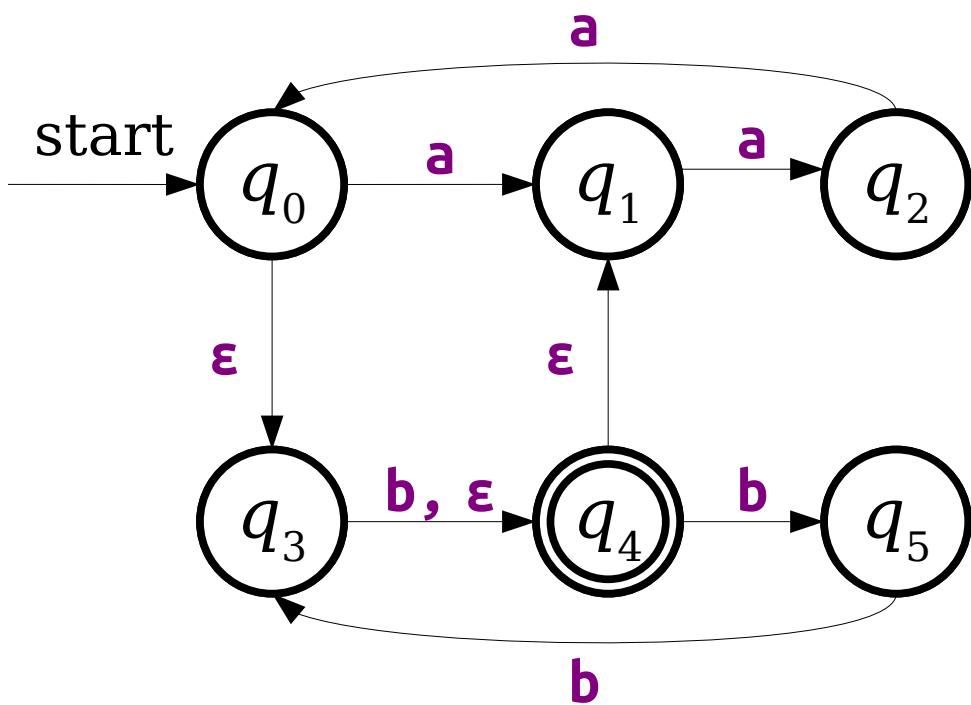
A language L is called a ***regular language*** if there exists a DFA D such that $\mathcal{L}(D) = L$.

NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.

ϵ -Transitions

- NFAs have a special type of transition called the **ϵ -transition**.
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.



Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- The NFA accepts if *any* of the states that are active at the end are accepting states. It rejects otherwise.

Just how powerful *are* NFAs?

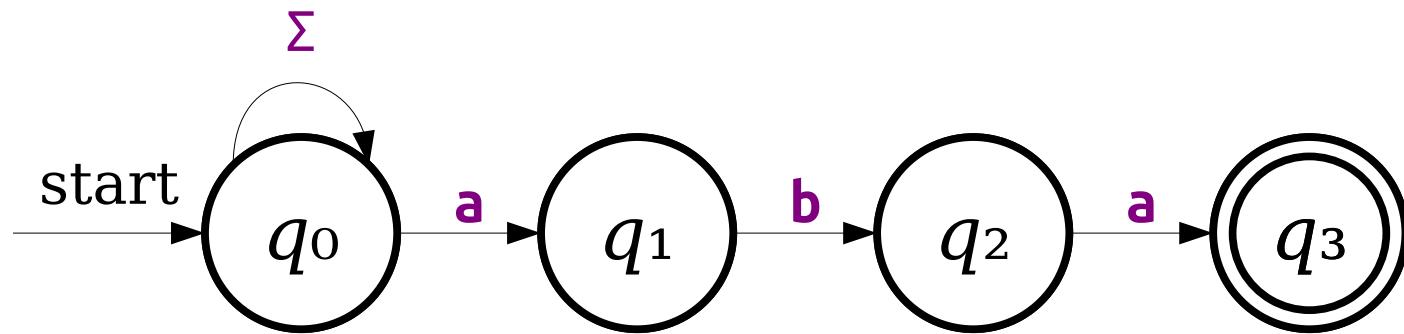
New Stuff!

NFAs and DFAs

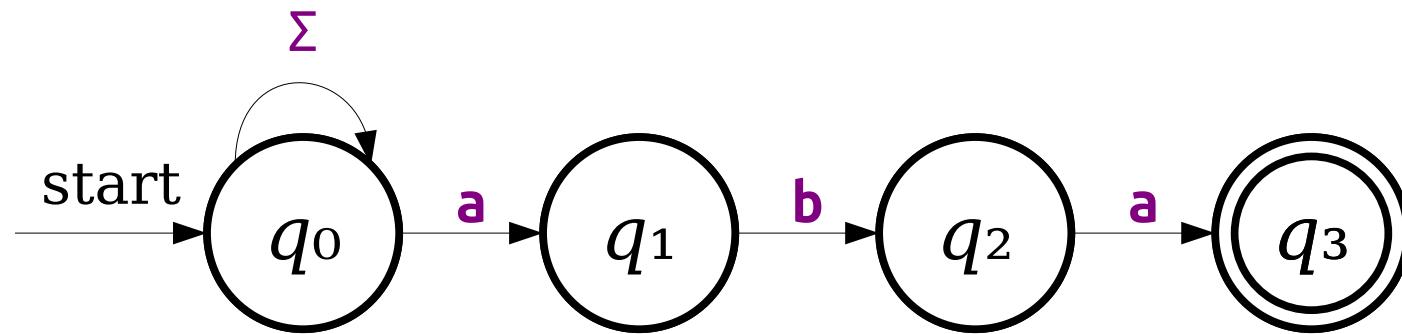
- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already *is* an NFA!
- **Question:** Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is **yes!**

Thought Experiment:

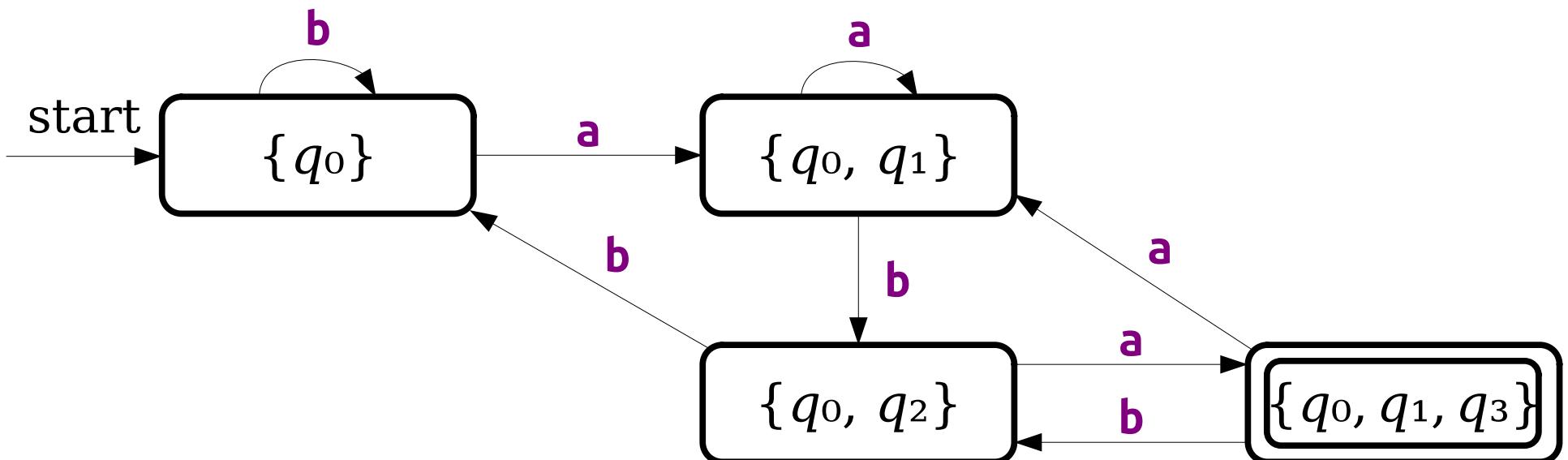
How would you simulate an NFA in software?



	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$^*\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the ***subset construction***.
 - It's sometimes called the ***powerset construction***; it's different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
- There's an online ***Guide to the Subset Construction*** with a more elaborate example involving ϵ -transitions and cases where the NFA dies; check that for more details.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- ***Useful fact:*** $|\wp(S)| = 2^{|S|}$ for any finite set S .
- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- ***Question to ponder:*** Can you find a family of languages that have NFAs of size n , but no DFAs of size less than 2^n ?

A language L is called a *regular language* if there exists a DFA D such that $\mathcal{L}(D) = L$.

An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L . First, assume L is regular. That means there's a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there's an NFA (D) whose language is L .

Next, assume there's an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish

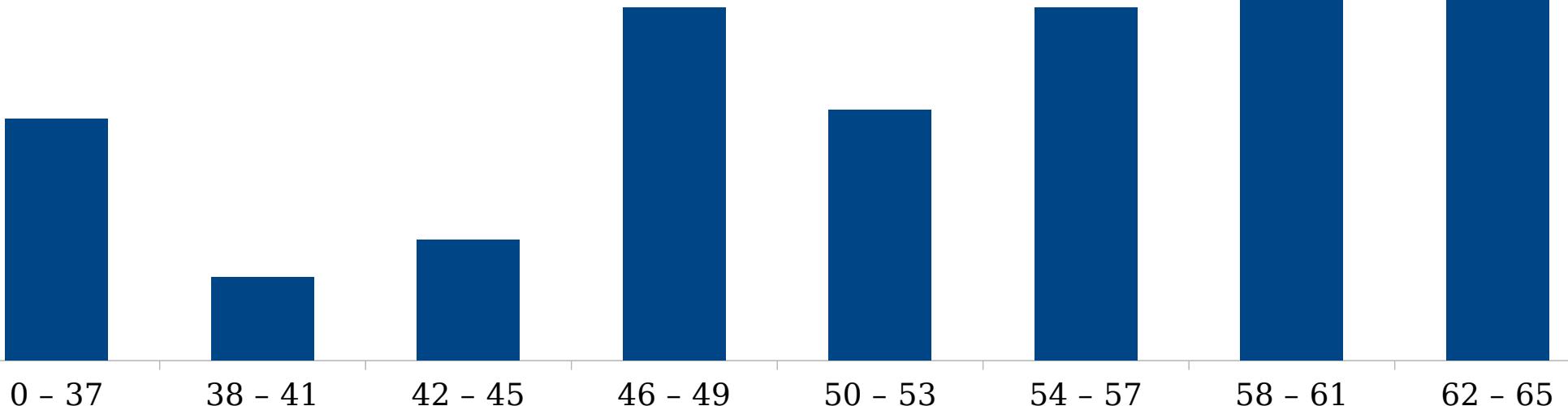
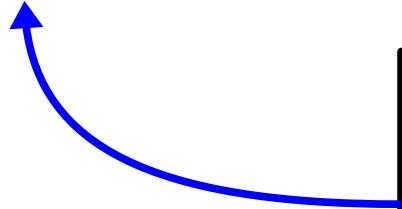
Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.

Time-Out for Announcements!

Problem Set Four Grades

75th Percentile: **60 / 65 (92%)**
50th Percentile: **55 / 85 (85%)**
25th Percentile: **48 / 85 (74%)**



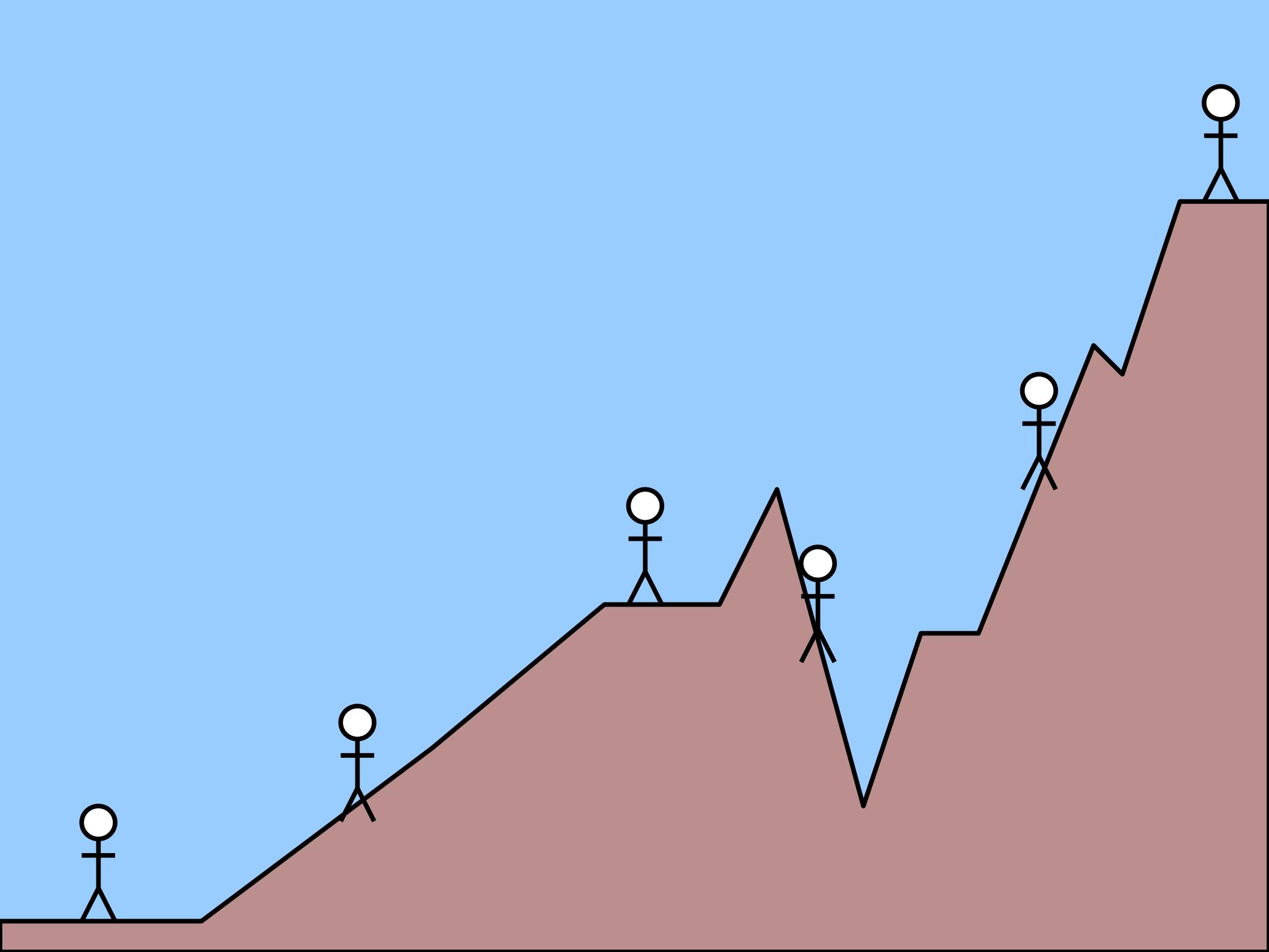
Many of these grades are because folks forgot to list partners - please check to make sure you're getting credit for the work you're doing, and let us know if your partner forgot to add you.

Problem Set Six

- Problem Set Five was due at 2:30PM today.
- Problem Set Six goes out today. It's due next Friday at 2:30PM.
 - Design DFAs and NFAs for a range of problems!
 - Explore formal language theory!
 - See some clever applications!

Second Midterm Logistics

- Our second midterm exam is a 49-hour take-home exam that goes out next Friday (November 5th) at 2:30PM and comes due next Sunday (November 7th) at 2:30PM Pacific time.
 - It's 49 hours long because of the switch to Daylight Saving Time.
- Topic coverage is PS3 – PS5 and lectures 07 – 13 (functions through induction). Later topics (automata, formal languages) won't be tested. Earlier topics are fair game for the exam, since the material in this class builds on itself.
- We've released Extra Practice Problems 2, a collection of 18 problems with solutions, to the course website to help you prepare.
- And always, keep the TAs in the loop! Let us know what we can do to help out.



Three Questions

- What's something you know now that, at the start of the quarter, you knew you didn't know?
- What's something you know now that, at the start of the quarter, you *didn't* know you didn't know?
- What's something you *don't* know now that, at the start of the quarter, you *didn't* know you didn't know?

Your Questions

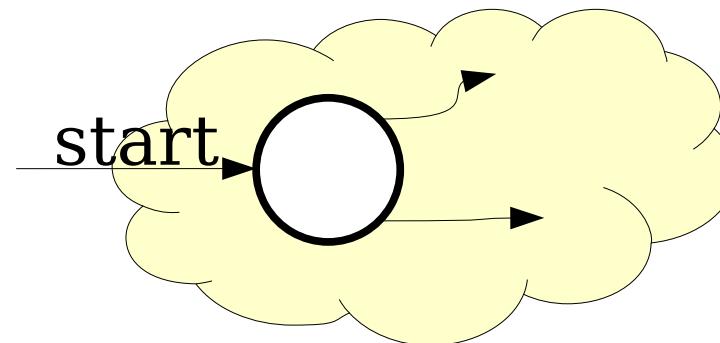
Next time, because I forgot to set that up today. Oops.

Back to CS103!

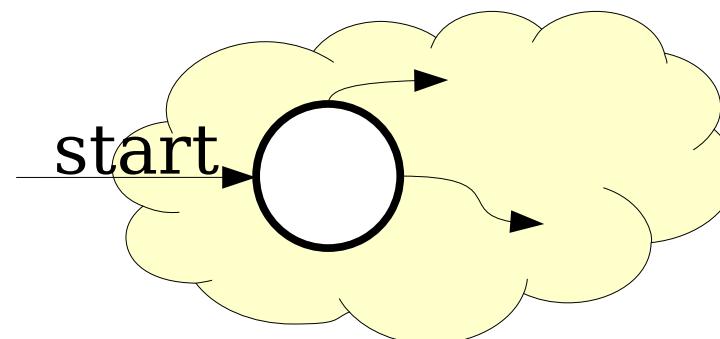
Properties of Regular Languages

The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?



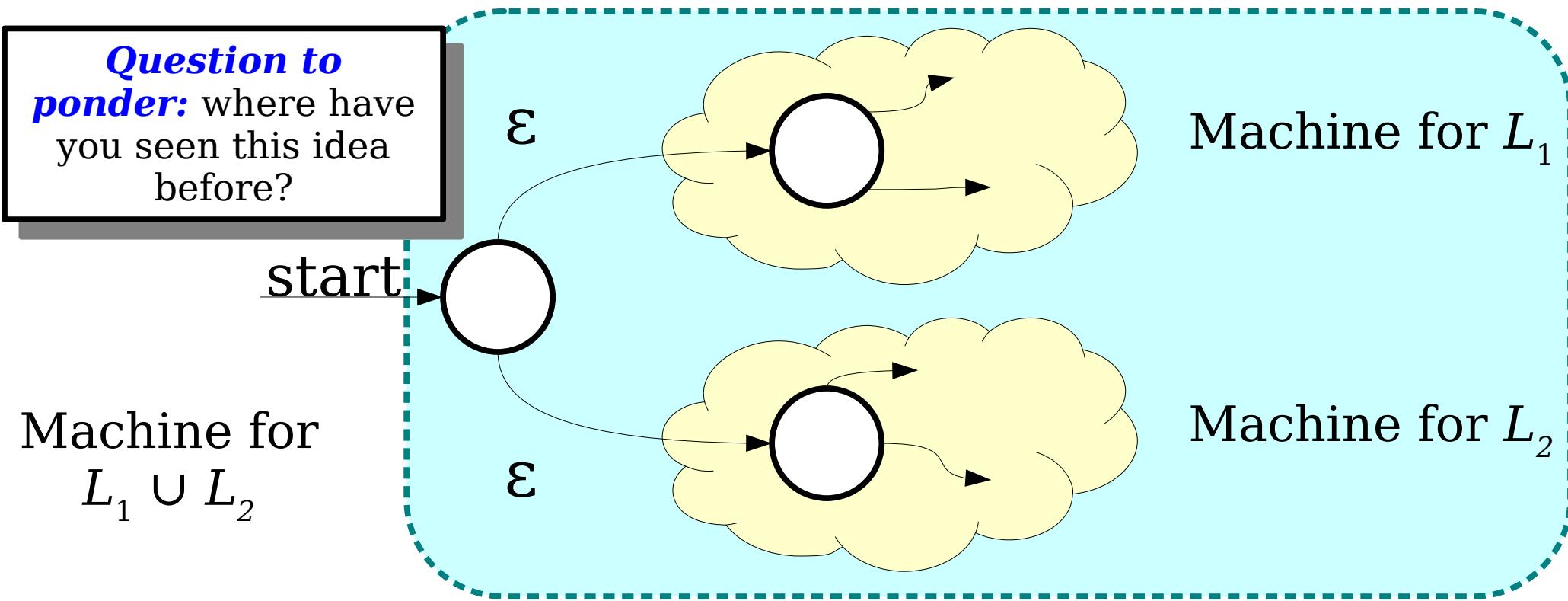
Machine for L_1



Machine for L_2

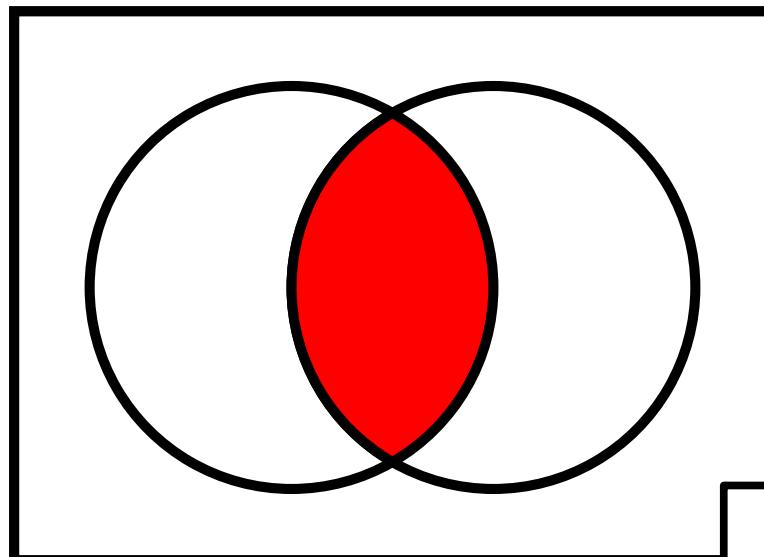
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?



The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?



$$\overline{L}_1 \cup \overline{L}_2$$

Hey, it's De
Morgan's laws!

Concatenation

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the **concatenation** of w and x , denoted wx , is the string formed by tacking all the characters of x onto the end of w .
- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.
- This is analogous to the $+$ operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ϵ is the **identity element** for concatenation:

$$w\epsilon = \epsilon w = w$$

- Concatenation is **associative**:

$$wx y = w(xy) = (wx)y$$

Concatenation

- The ***concatenation*** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1 L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \wedge x \in L_2 \}$$

Concatenation Example

- Let $\Sigma = \{ \text{a, b, ..., z, A, B, ..., Z} \}$ and consider these languages over Σ :
 - ***Noun*** = { **Puppy, Rainbow, Whale, ...** }
 - ***Verb*** = { **Hugs, Juggles, Loves, ...** }
 - ***The*** = { **The** }
- The language ***TheNounVerbTheNoun*** is
 - { **ThePuppyHugsTheWhale,**
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }

Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1 L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \wedge x \in L_2 \}$$

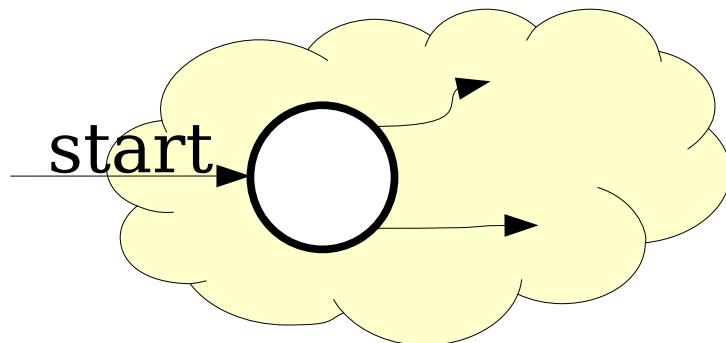
- Two views of $L_1 L_2$:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2 .
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2 .

This is closely related to, but different than, the Cartesian product.

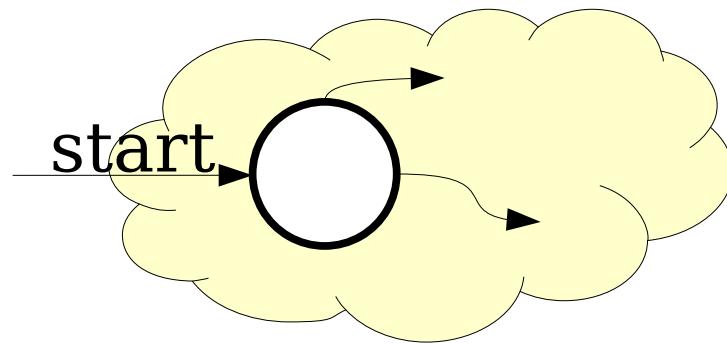
Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?

Concatenating Regular Languages

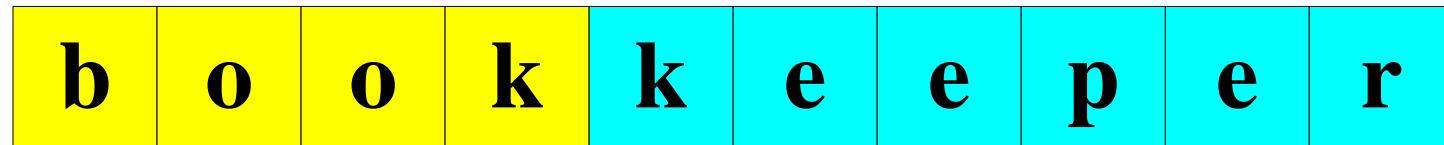
- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?



Machine for L_1

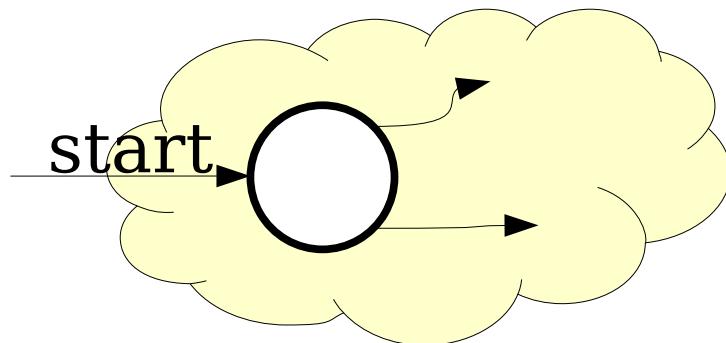


Machine for L_2

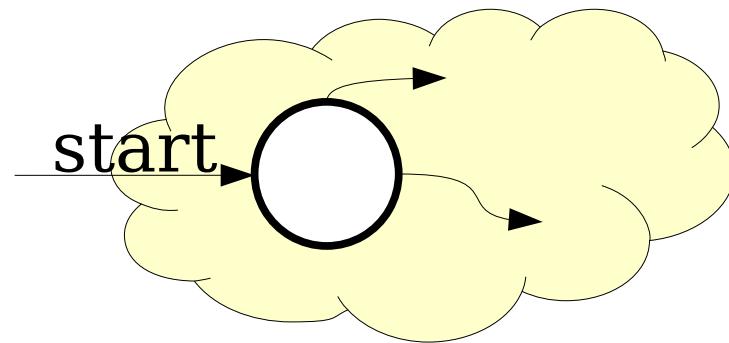


Concatenating Regular Languages

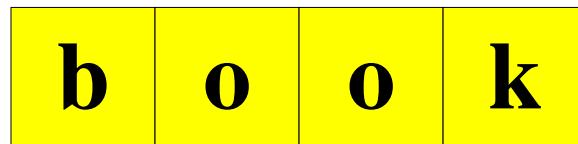
- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?



Machine for L_1



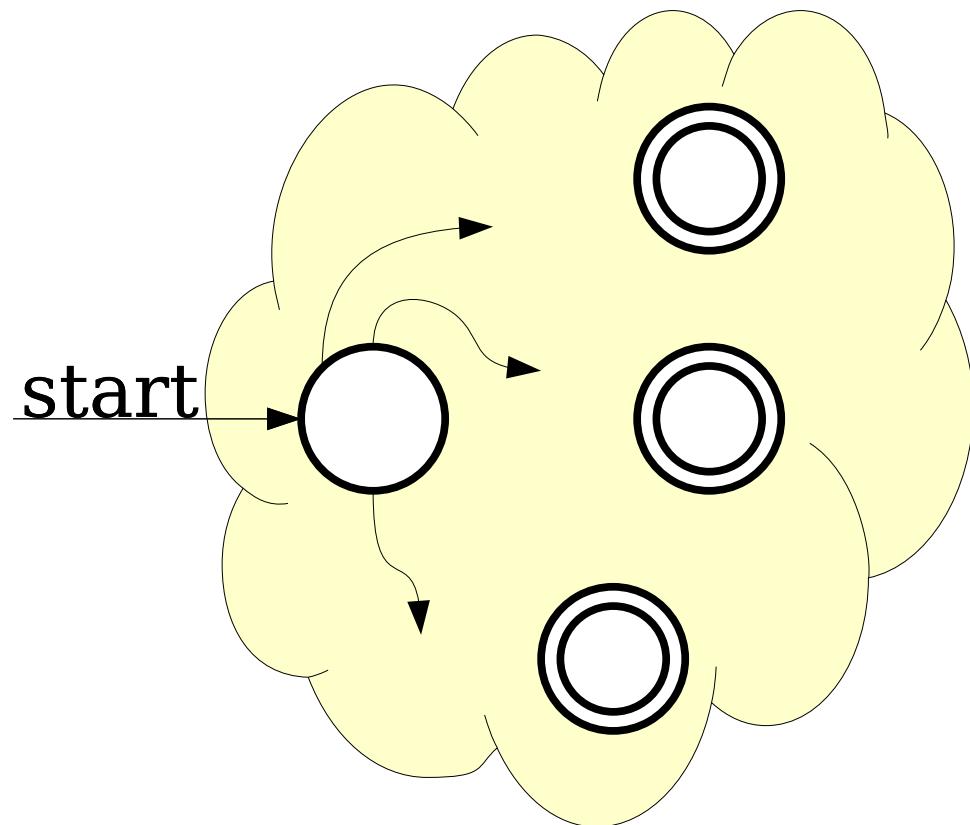
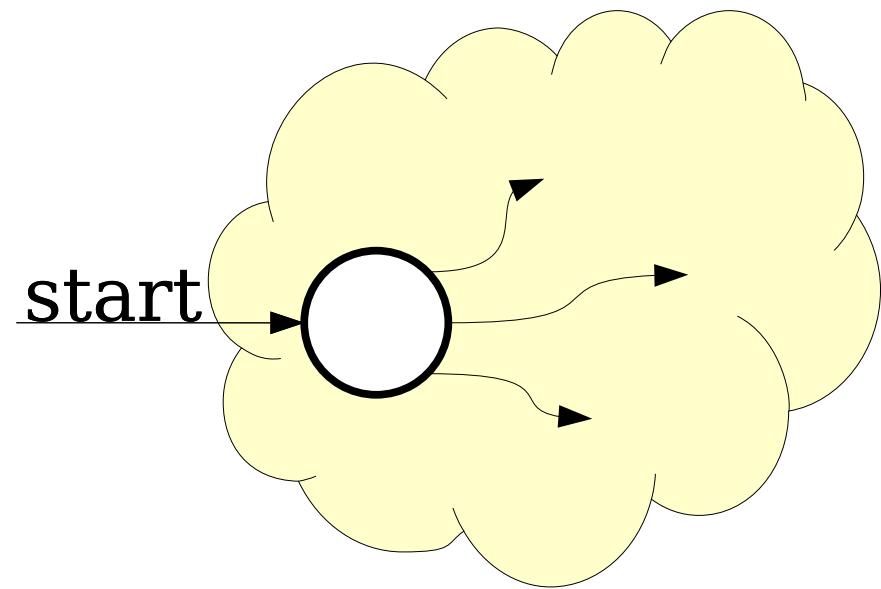
Machine for L_2



Concatenating Regular Languages

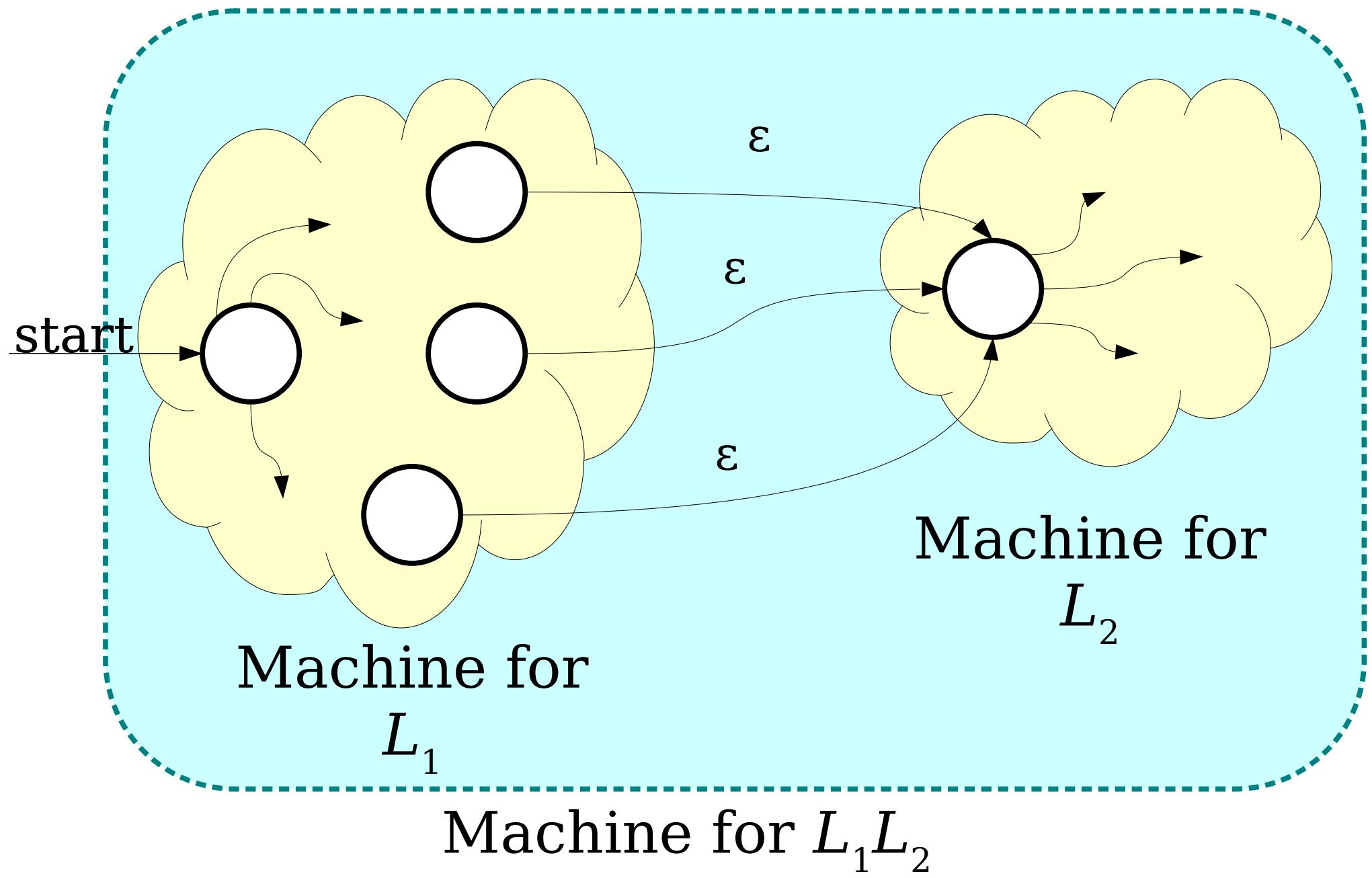
- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- ***Idea:***
 - Run a DFA/NFA for L_1 on w .
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2 .
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.

Concatenating Regular Languages



Machine for
 L_2

Concatenating Regular Languages



Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa}, \text{b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L .

$$\{ \text{aaaa}, \text{aab}, \text{baa}, \text{bb} \}$$

- LLL is the set of strings formed by concatenating triples of strings in L .

$$\{ \text{aaaaaa}, \text{aaaab}, \text{aabaa}, \text{aabb}, \text{baaaa}, \text{baab}, \text{bbaa}, \text{bbb} \}$$

- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L .

$$\{ \text{aaaaaaaa}, \text{aaaaaab}, \text{aaaabaa}, \text{aaaabb}, \text{aabaaaa}, \text{aabaab}, \text{aabbaa}, \text{aabb}, \text{baaaaa}, \text{baaaab}, \text{baabaa}, \text{baabb}, \text{bbaaaa}, \text{bbaab}, \text{bbbaa}, \text{bbbb} \}$$

Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
- $L^0 = \{\varepsilon\}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?
- $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?
- **Question to ponder:** What is \emptyset^0 ?

The Kleene Star

The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \}$$

- Mathematically:

$$w \in L^* \leftrightarrow \exists n \in \mathbb{N}. w \in L^n$$

- Intuitively, L^* is the language all possible ways of concatenating zero or more strings in L together, possibly with repetition.
- **Question to ponder:** What is \emptyset^* ?

The Kleene Closure

If $L = \{ \text{ a, bb } \}$, then $L^* = \{$

$\varepsilon,$

a, bb,

$\text{aa, abb, bba, bbbb,}$

$\text{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb,}$

\dots

}

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.

Reasoning about Infinity

- If L is regular, is L^* necessarily regular?
- **A Bad Line of Reasoning:**
 - $L^0 = \{ \epsilon \}$ is regular.
 - $L^1 = L$ is regular.
 - $L^2 = LL$ is regular
 - $L^3 = L(LL)$ is regular
 - ...
 - Regular languages are closed under union.
 - So the union of all these languages is regular.

Reasoning About the Infinite

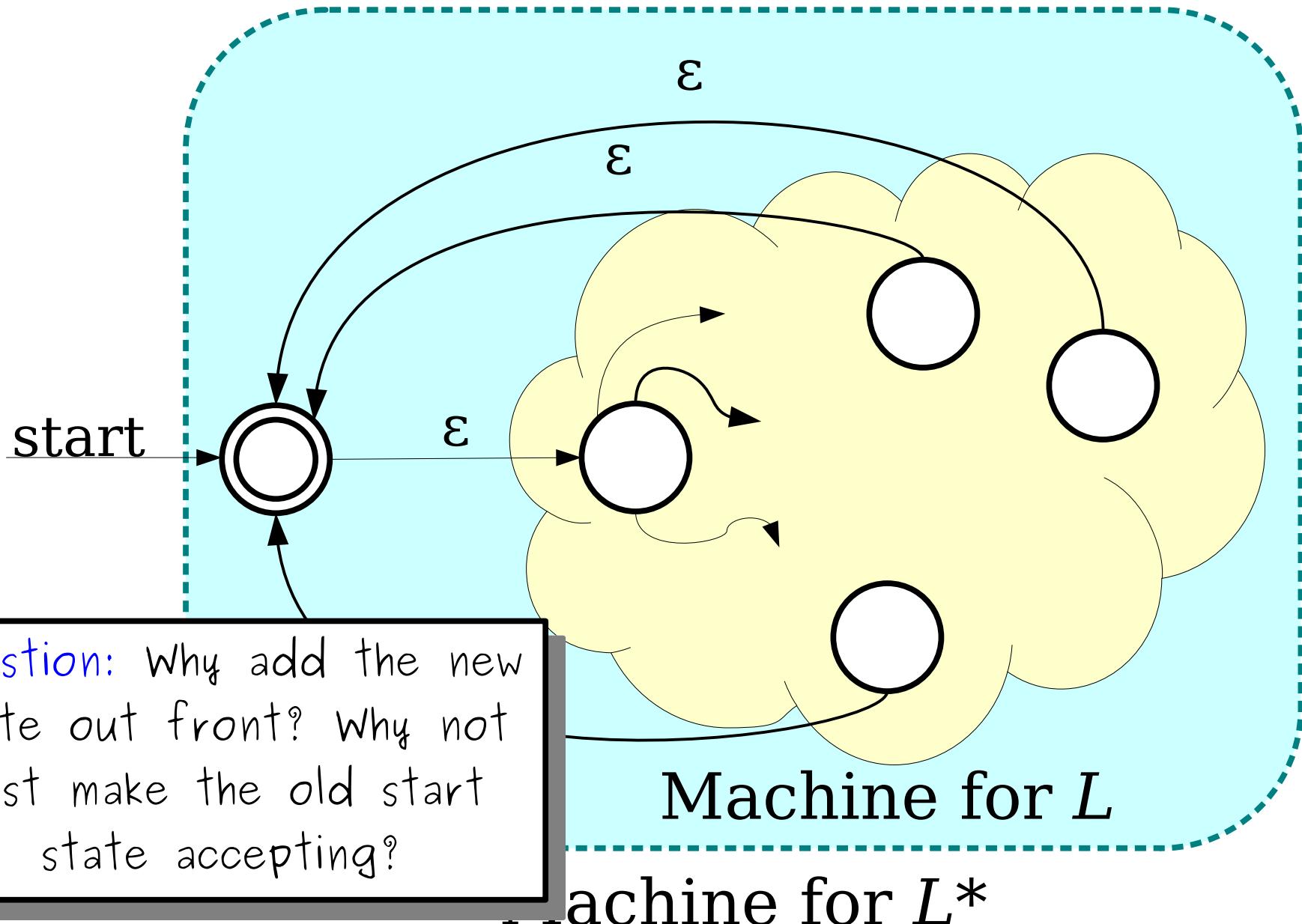
- If a series of finite objects all have some property, the “limit” of that process *does not* necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 - (This is why calculus is interesting).
- So our earlier argument ($L^* = L^0 \cup L^1 \cup \dots$) isn’t going to work.
- We need a different line of reasoning.

Idea: Can we directly convert an NFA for language L to an NFA for language L^* ?

The Kleene Star



The Kleene Star



Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*
- These properties are called ***closure properties of the regular languages.***

Next Time

- ***Regular Expressions***
 - Building languages from the ground up!
- ***Thompson's Algorithm***
 - A UNIX Programmer in Theoryland.
- ***Kleene's Theorem***
 - From machines to programs!