

Finite Automata
Part Three

Recap from Last Time

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first row, it's the

start state.

q3

If D is a DFA, the language of D, denoted
(ℒ D), is { w ∈ Σ* | D accepts w }.

A language L is called a regular
language if there exists a DFA D such that

(ℒ D) = L.

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple
transitions defined on the same input
symbol.

● Accepts if any possible series of choices
leads to an accepting state.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

Massive Parallelism

● An NFA can be thought of as a DFA that
can be in many states at once.

● At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

● The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.

Just how powerful are NFAs?

New Stuff!

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

The Subset Construction

● This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states

would be considered accepting in the NFA when using the massive
parallel intuition.

● There’s an online Guide to the Subset Construction with
a more elaborate example involving ε-transitions and cases
where the NFA dies; check that for more details.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially larger
than the original NFA.

● Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular if and only if
there is some NFA N such that (ℒ N) = L.

Proof Sketch: Pick a language L. First, assume
L is regular. That means there’s a DFA D where

(ℒ D) = L. Every DFA is “basically” an NFA, so
there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that
(ℒ N) = L. Using the subset construction, we

can build a DFA D where (ℒ N) = (ℒ D). Then
we have that (ℒ D) = L, so L is regular. ■-ish

Why This Matters

● We now have two perspectives on regular
languages:
● Regular languages are languages accepted

by DFAs.
● Regular languages are languages accepted

by NFAs.
● We can now reason about the regular

languages in two different ways.

Time-Out for Announcements!

0 – 37 38 – 41 42 – 45 46 – 49 50 – 53 54 – 57 58 – 61 62 – 65

Problem Set Four Grades
75th Percentile: 60 / 65 (92%)
50th Percentile: 55 / 85 (85%)
25th Percentile: 48 / 85 (74%)

Many of these grades are because folks
forgot to list partners – please check to
make sure you’re getting credit for the
work you’re doing, and let us know if

your partner forgot to add you.

Problem Set Six

● Problem Set Five was due at 2:30PM
today.

● Problem Set Six goes out today. It’s due
next Friday at 2:30PM.
● Design DFAs and NFAs for a range of

problems!
● Explore formal language theory!
● See some clever applications!

Second Midterm Logistics

● Our second midterm exam is a 49-hour take-home exam
that goes out next Friday (November 5th) at 2:30PM and
comes due next Sunday (November 7th) at 2:30PM Pacific
time.
● It’s 49 hours long because of the switch to Daylight Saving Time.

● Topic coverage is PS3 – PS5 and lectures 07 – 13 (functions
through induction). Later topics (automata, formal
languages) won’t be tested. Earlier topics are fair game for
the exam, since the material in this class builds on itself.

● We’ve released Extra Practice Problems 2, a collection of 18
problems with solutions, to the course website to help you
prepare.

● And always, keep the TAs in the loop! Let us know what we
can do to help out.

Three Questions

● What’s something you know now that, at
the start of the quarter, you knew you didn’t
know?

● What’s something you know now that, at
the start of the quarter, you didn’t know you
didn’t know?

● What’s something you don’t know now that,
at the start of the quarter, you didn’t know
you didn’t know?

Your Questions

Next time, because I
forgot to set that
up today. Oops.

Back to CS103!

Properties of Regular Languages

The Union of Two Languages

Machine for L1
start

start Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at least
one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at least
one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

Machine for L1

Machine for L2Machine for
L1 ∪ L2

Question to
ponder: where have

you seen this idea
before?

L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

Hey, it's De
Morgan's laws!

Concatenation

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation

● The concatenation of two languages L₁
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation

● The concatenation of two languages L₁ and L₂
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by concatenating
a string in L₁ with a string in L₂.

● The set of strings that can be split into two pieces: a
piece from L₁ and a piece from L₂.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian

products? In what ways are they
different?

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.

● Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split
was incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.

● Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split
was incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.

● Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split
was incorrect.

Concatenating Regular Languages

start start
start start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no

strings together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Star

The Kleene Closure

● An important operation on languages is the
Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* ↔ ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

● Question to ponder: What is Ø*?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

Reasoning About the Infinite

● If a series of finite objects all have some
property, the “limit” of that process does not
necessarily have that property.

● In general, it is not safe to conclude that some
property that always holds in the finite case
must hold in the infinite case.
● (This is why calculus is interesting).

● So our earlier argument (L* = L0 ∪ L1 ∪ …) isn’t
going to work.

● We need a different line of reasoning.

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

start

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

