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Part Three



  

Recap from Last Time



  

Tabular DFAs
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If D is a DFA, the language of D, denoted 
(ℒ D), is { w ∈ Σ* | D accepts w }.

A language L is called a regular 
language if there exists a DFA D such that 

(ℒ D) = L.



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple 
transitions defined on the same input 
symbol.

● Accepts if any possible series of choices 
leads to an accepting state.
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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Massive Parallelism

● An NFA can be thought of as a DFA that 
can be in many states at once.

● At each point in time, when the NFA 
needs to follow a transition, it tries all 
the options at the same time.

● The NFA accepts if any of the states that 
are active at the end are accepting 
states. It rejects otherwise.



  

Just how powerful are NFAs?



  

New Stuff!



  

NFAs and DFAs

● Any language that can be accepted by a 
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by 
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!



  

Thought Experiment:
How would you simulate an NFA in 

software?
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The Subset Construction

● This procedure for turning an NFA for a language L into a 
DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different 

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would 

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states 

would be considered accepting in the NFA when using the massive 
parallel intuition.

● There’s an online Guide to the Subset Construction with 
a more elaborate example involving ε-transitions and cases 
where the NFA dies; check that for more details.



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can 

result in a DFA that is exponentially larger 
than the original NFA.

● Question to ponder: Can you find a family 
of languages that have NFAs of size n, but 
no DFAs of size less than 2n?



  

A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

An Important Result

Theorem: A language L is regular if and only if
there is some NFA N such that (ℒ N) = L.

 

Proof Sketch: Pick a language L. First, assume
L is regular. That means there’s a DFA D where

(ℒ D) = L. Every DFA is “basically” an NFA, so
there’s an NFA (D) whose language is L.

 

Next, assume there’s an NFA N such that
(ℒ N) = L. Using the subset construction, we

can build a DFA D where (ℒ N) = (ℒ D). Then
we have that (ℒ D) = L, so L is regular. ■-ish



  

Why This Matters

● We now have two perspectives on regular 
languages:
● Regular languages are languages accepted 

by DFAs.
● Regular languages are languages accepted 

by NFAs.
● We can now reason about the regular 

languages in two different ways.



  

Time-Out for Announcements!



  

0 – 37 38 – 41 42 – 45 46 – 49 50 – 53 54 – 57 58 – 61 62 – 65

Problem Set Four Grades
75th Percentile: 60 / 65 (92%)
50th Percentile: 55 / 85 (85%)
25th Percentile: 48 / 85 (74%)

Many of these grades are because folks 
forgot to list partners – please check to 
make sure you’re getting credit for the 
work you’re doing, and let us know if 

your partner forgot to add you.



  

Problem Set Six

● Problem Set Five was due at 2:30PM 
today.

● Problem Set Six goes out today. It’s due 
next Friday at 2:30PM.
● Design DFAs and NFAs for a range of 

problems!
● Explore formal language theory!
● See some clever applications!



  

Second Midterm Logistics

● Our second midterm exam is a 49-hour take-home exam 
that goes out next Friday (November 5th) at 2:30PM and 
comes due next Sunday (November 7th) at 2:30PM Pacific 
time.
● It’s 49 hours long because of the switch to Daylight Saving Time.

● Topic coverage is PS3 – PS5 and lectures 07 – 13 (functions 
through induction). Later topics (automata, formal 
languages) won’t be tested. Earlier topics are fair game for 
the exam, since the material in this class builds on itself.

● We’ve released Extra Practice Problems 2, a collection of 18 
problems with solutions, to the course website to help you 
prepare.

● And always, keep the TAs in the loop! Let us know what we 
can do to help out.



  



  



  

Three Questions

● What’s something you know now that, at 
the start of the quarter, you knew you didn’t 
know?

● What’s something you know now that, at 
the start of the quarter, you didn’t know you 
didn’t know? 

● What’s something you don’t know now that, 
at the start of the quarter, you didn’t know 
you didn’t know?



  

Your Questions

Next time, because I 
forgot to set that 
up today. Oops.



  

Back to CS103!



  

Properties of Regular Languages



  

The Union of Two Languages

Machine for L1
start

start Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at least 
one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at least 
one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?
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L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?

Hey, it's De 
Morgan's laws!



  

Concatenation



  

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 
denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many 
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y



  

Concatenation

● The concatenation of two languages L₁ 
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in L₂. 

The set of strings that can be split into two 
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenation

● The concatenation of two languages L₁ and L₂ 
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by concatenating 
a string in L₁ with a string in L₂. 

● The set of strings that can be split into two pieces: a 
piece from L₁ and a piece from L₂.

This is closely related to, but different 
than, the Cartesian product.

 

Question to ponder: In what ways are 
concatenations similar to Cartesian 

products? In what ways are they 
different?



  

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings 
xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.

● Whenever it reaches an accepting state, optionally 
hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split 
was incorrect.
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Concatenating Regular Languages
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Concatenating Regular Languages

start    

ε

ε

ε

start    

Machine for
L1

Machine for
L2

Machine for L1L2



  

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no 

strings together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?



  

The Kleene Star



  

The Kleene Closure

● An important operation on languages is the 
Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     ↔     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible ways 
of concatenating zero or more strings in L 
together, possibly with repetition.

● Question to ponder: What is Ø*?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.



  

Reasoning About the Infinite

● If a series of finite objects all have some 
property, the “limit” of that process does not 
necessarily have that property.

● In general, it is not safe to conclude that some 
property that always holds in the finite case 
must hold in the infinite case.
● (This is why calculus is interesting).

● So our earlier argument (L* = L0 ∪ L1 ∪ …) isn’t 
going to work.

● We need a different line of reasoning.



  

Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?



  

The Kleene Star
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The Kleene Star

εstart    

ε

ε

Machine for L

Machine for L*

Question: Why add the new 
state out front? Why not 
just make the old start 

state accepting?



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.

 



  

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!
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