
  

Regular Expressions



  

Recap from Last Time



  

Regular Languages

● A language L is a regular language if 
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.



  

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the 
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the 
concatenation of L₁ and L₂ is the language 
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb }, 

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



  

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no 

strings together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.

● Question: What is Ø0?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.



  

New Stuff!



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages 

together via closure properties to form L.
● We have not spoken much of this last 

idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● This is a bottom-up approach to the 
regular languages.
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● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
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Regular Expressions

● Regular expressions are a way of describing a 
language via a string representation.

● They’re used just about everywhere:
● They’re built into the JavaScript language and used for 

data validation.
● They’re used in the UNIX grep and flex tools to search 

files and build compilers.
● They’re employed to clean and scrape data for large-

scale analysis projects.
● Conceptually, regular expressions are strings 

describing how to assemble a larger language out 
of smaller pieces.



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression that 
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular 
expression for the language {a}.

● The symbol ε is a regular expression that 
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!



  

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a 
regular expression for the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is a 
regular expression for the union of the languages 
of R1 and R2.

● If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Operator Precedence

● Here’s the operator precedence for 
regular expressions:

(R)

R*

R1R2

R1 ∪ R2 

● So ab*c∪d is parsed as ((a(b*))c)∪d



  

Regular Expression Examples

● The regular expression trick∪treat represents 
the language

{ trick, treat }.
● The regular expression booo* represents the 

regular language

{ boo, booo, boooo, … }.
● The regular expression candy!(candy!)* 

represents the regular language

{ candy!, candy!candy!, candy!candy!candy!, … }.



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)

● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

(a  b)*aa(a ∪ ∪ b)*
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Designing Regular Expressions
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substring }.
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Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

(a  b)*∪ aa(a  b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.



  

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of 
a string w is 
denoted |w|
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Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪
b*(a  ε)b*∪
b*a*b*  b*∪
b*(a*  ε)b*∪



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)b*∪



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.
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A More Elaborate Design
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
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A More Elaborate Design
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+



  

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

.       a

q4
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

@, .             @            @, .
 @

@, .

q0
a

@, .
Σ



  

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R⁰ = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R  ε)∪ , meaning 

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

Time-Out for Announcements!



  

Midterm Exam Logistics

● Our next Midterm runs this Friday, November 5th at 
2:30PM through this Sunday, November 7th at 2:30PM, 
Pacific time.
● That’s 49 hours rather than the normal 48. Huzzah!

● Topic coverage is primarily lectures 06 – 13 (functions 
through induction) and PS3 – PS5. Finite automata and 
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and 

Lectures 00 – 05 are also fair game.
● Extra Practice Problems 2 is available on the course 

website if you want to get more practice with these topics.
● We want you to do well on this exam. Keep in touch and 

let us know what we can do to help make that happen!



  

Your Questions



  

“I know that one assignment, one test, or one 
class doesn't define my ability to succeed in CS, 
but is there a point that I really should consider 
another career path if I still can't do well? If so, 

where?”

If you’re really struggling with something, the first question to ask is “what am I 
doing, and why isn’t it working?” That can be hard to ask because it requires 
you to introspect on what your approach is, what parts are working, and what 
aren’t. And often that requires chatting with someone more experienced to get 
input on what you’re doing.
 

My recommendation would be to start with this and to size up where you are and 
what energy would be required to change things. That will give you a roadmap 
of what you need to do. From there, you can evaluate whether what you’re 
doing is worth the time investment. If it is, great! Put in the time, be 
circumspect, evaluate as you go, and you’ll be in good shape. If not, there’s 
your answer. But I would avoid “jumping ship” until you have a clear answer to 
this question, since it would be a real shame if you needed to only tune or 
tweak a few things to get on a great track and you ended up walking away.



  

Back to CS103!



  

The Lay of the Land
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Languages you can
build an NFA for.
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The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent 

regular languages.
● The combination steps represent closure 

properties.
● So anything you can make from them must 

be regular!



  

Thompson’s Algorithm

● In practice, many regex matchers use an 
algorithm called Thompson's algorithm 
to convert regular expressions into NFAs 
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of 
Unix!
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Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  
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Σ  



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  

These are all regular 
expressions!



  

Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    



  

Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.
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Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.
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Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read off a regular 
expression for the original NFA.

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂ R , and ₂₁ R  are ₂₂

arbitrary regular expressions.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean 
regular expression from this NFA?



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform 
this NFA so that it looks like this:

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start
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From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate 
this state from 

the NFA?



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R21 R11* R12

R22



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

What should we put on 
this transition?



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)*



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

The State-Elimination Algorithm

● Start with an NFA N for the language L.

● Add a new start state qs and accept state qf to the 
NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf, then 
mark them as not accepting.

● Repeatedly remove states other than qs and qf from 
the NFA by “shortcutting” them until only two states 
remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

The State-Elimination Algorithm

● To eliminate a state q from the automaton, do the following 
for each pair of states q₀ and q₁, where there's a transition 
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q 
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled 
((Rin)(Rout))

● If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why This Matters

● The equivalence of regular expressions 
and finite automata has practical 
relevance.
● Regular expression matchers have all the 

power available to them of DFAs and NFAs.
● This also is hugely theoretically 

significant: the regular languages can be 
assembled “from scratch” using a small 
number of operations!



  

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.
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