Regular Expressions



Recap from Last Time



Regular Languages

A language L is a regular language it
there is a DFA D such that (D) = L.

« Theorem: The following are equivalent:

« L is a regular language.
e There is a DFA for L.
e There is an NFA for L.



Language Concatenation

e [fw € 2* and x € X*, then wx is the
concatenation of w and x.

« If L1 and Lz are languages over 2, the
concatenation of L1 and Lz is the language
L1l.> defined as

Lilz ={wx|we€Liand x € Lz }

« Example: if L1 = { a, ba, bb } and L2 = { aa, bb },
then

L1l.> = { aaa, abb, baaa, babb, bbaa, bbbb }



[.ots and Lots of Concatenation

« Consider the language L. = { aa, b }

« LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

* LY = 1€}

 Intuition: The only string you can form by gluing no
strings together is the empty string.

 Notice that {e} # . Can you explain why?
o Ln+1 = [.I"

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define L° = {€}?
* Question to ponder: What is 9°?



The Kleene Closure

 An important operation on languages is
the Kleene Closure, which is defined as

IL*={we2X2* | dn€ N.weL"}
« Mathematically:
welL* iff dne€ N.welL"

 Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

* Question: What is O°?



The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as The set of sfrings you
can make if you have a collection of
sfamps - one for each string in L -
and you torm every possible sfring
that can be made from those stamps,




Closure Properties

» Theorem: If L. and L2 are regular
languages over an alphabet X, then so are
the following languages:

e I1
e [1 U L[>
e [1NL>
e [1l.>
° Ll*
 These properties are called closure
properties of the regular languages.



New Stuff!



Another View of Regular Languages



Rethinking Regular Languages

 We currently have several tools for
showing a language L is regular:

e Construct a DFA for L.

e Construct an NFA for L.

 Combine several simpler regular languages
together via closure properties to form L.

 We have not spoken much of this last
idea.



Constructing Regular Languages

* Idea: Build up all regular languages as
follows:

« Start with a small set of simple languages we
already know to be regular.

« Using closure properties, combine these
simple languages together to form more
elaborate languages.

* This is a bottom-up approach to the
regular languages.



Constructing Regular Languages

* Idea: Build up all regular languages as
follows:

« Start with 2
already

* Using d
simple |
elabora

» This is a
regular |




Regular Expressions

* Regular expressions are a way of describing a
language via a string representation.

« They're used just about everywhere:

 They’'re built into the JavaScript language and used for
data validation.

 They're used in the UNIX grep and flex tools to search
files and build compilers.

 They’'re employed to clean and scrape data for large-
scale analysis projects.

« Conceptually, regular expressions are strings
describing how to assemble a larger language out
of smaller pieces.



Atomic Regular Expressions

* The regular expressions begin with three
simple building blocks.

 The symbol O is a regular expression that
represents the empty language .

 For any a € 2, the symbol a is a regular
expression for the language {a}.

* The symbol € is a regular expression that
represents the language {¢}.

 Remember: {€} # O!
 Remember: {€} # €!



Compound Regular Expressions

- If R, and R, are regular expressions, R, R, is a

regular expression for the concatenation of the
languages of R, and R,

- If R, and R, are regular expressions, R, U R, is a

regular expression for the union of the languages
of R, and R,.

* If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

* If R is a regular expression, (R) is a regular
expression with the same meaning as R.



Operator Precedence

 Here’s the operator precedence for
regular expressions:

(R)
R*
RIRZ
R, UR,
* SO ab*cUd is parsed as ((a(b*))c)ud



Regular Expression Examples

* The regular expression trickUtreat represents
the language

{ trick, treat }.

* The regular expression booo* represents the
regular language

{ boo, booo, boooo, ... }.

* The regular expression candy!(candy!)*
represents the regular language

{ candy!, candy!candy!, candy!candy!candy!, ... }.



Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

 Formally:
» L(g) = {e}
c (D) =0
* F(a) = {a}
.+ $(R,R) = 4(R,) £(R,)
+ (R, UR,) = 2(R,) U 4(R))
o F(R*) = L(R)*
* Z((R)) = £(R)

WorThwhile activity: Apply
This recursive definition to

a(bUc)((d))

and see whal you gef,




Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.
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Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.
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Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

bbabbbaabab
aa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

2*aaz¥*

bbabbbaabab
aa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}



Designing Regular Expressions

jw| =4

The length of
a string w is

denoted |w




Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}



Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}
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Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}
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Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}
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aaaa
baba

bbbb
baaa



Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}
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Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}

24

2daa
baba

bbbb
baaa



Designing Regular Expressions

e et 2 ={a, b}.

« Let L = { w € 2* | wcontains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

2*32*%
b*ab* U b*
b*(a U €)b*
b*a*b* U b*
b*(a* U €)b*




Designing Regular Expressions

e et X = {a, b}.

» LetL = { w € 2* | wcontains at most one a }.

b*(a U g£)b*



Designing Regular Expressions

e et X = {a, b}.

« Let L = { w € 2* | wcontains at most one a }.

b* b*



Designing Regular Expressions

e et X = {a, b}.

 LetL = { w € Z* | w contains at most one a }.
b* b*

bbbbabbb
bbbbbb
abbb
a



Designing Regular Expressions

e et 2 ={a, b}.

« Let L = { w € 2* | w contains at most one a }.
b* b*

bbbbabbb
bbbbbb
bbb



Designing Regular Expressions

e et 2 ={a, b}.

« Let L = { w € 2* | w contains at most one a }.
b*a?b*

bbbbabbb
bbbbbb
bbb



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

cs103
first
dot



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

aa*

cs103
first
dot



A More Elaborate Design

e et ={a, ., @}, where arepresents
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* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)*
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dot.at(@



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* (@

cs103(@
first.middle.last(@
dot.at(@



A More Elaborate Design
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“some letter.”

* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa*
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A More Elaborate Design

e et ={a, ., @}, where arepresents
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A More Elaborate Design
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* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

a* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

a* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)* @ a*.a* (.a")*
cs103@cs.stanford.edu

first.middle. last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
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A More Elaborate Design
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
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A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

a* (.a*)* @ a* (.a*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

a*(.a*)*@a*(.a")’

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



For Comparison

a*(.a*)*@a*(.a*)"




Shorthand Summary

R” 1S shorthand for RR ... R (n times).
 Edge case: define R® = ¢,

> is shorthand for “any character in 2.”

R? is shorthand for (R U €), meaning
“zero or one copies of R.”

R* is shorthand for RR*, meaning “one or
more copies of R.”



Time-Out for Announcements!



Midterm Exam Logistics

e Our next Midterm runs this Friday, November 5% at
2:30PM through this Sunday, November 7% at 2:30PM,
Pacific time.

« That’s 49 hours rather than the normal 48. Huzzah!

» Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won'’t be tested here.

« Because the material is cumulative, topics from PS1 - PS2 and
Lectures 00 - 05 are also fair game.

 Extra Practice Problems 2 is available on the course
website if you want to get more practice with these topics.

 We want you to do well on this exam. Keep in touch and
let us know what we can do to help make that happen!



Your Questions



“I know that one assignment, one test, or one
class doesn't define my ability to succeed in CS,
but is there a point that I really should consider
another career path if I still can't do well? If so,

where?”

It youwre veally struggling with something, the first question fo ask is *what am 1
doing, and why isn't it working?* That can be hard fo ask because it requires
you To infrospect on what your approach is, whal parfs are working, and what
arent, And often thal requires chafting with someone more experienced to get
inpuf on what youre doing.

My recommendation would be to start with this and fo size up where you are and
what energy would be required to change things., That will give you a roadmap
of whal you need fo do. From there, you can evaluate whefher what you're
doing is worth the fime investment, It it is, greal: Pul in the time, be
circumspect, evaluate as you go, and youwll be in good shape. It nof, there’s
your answer, Bul I would avoid *jumping ship” until you have a clear answer to
this question, since it would be a real shame it you needed to only tune or
fweak a few things fo get on a great track and you ended up walking away.




Back to CS103!



The Lay of the Land
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build an NFA for,

Regular
Languages
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The Power of Regular Expressions

Theorem: If R is a regular expression,
then £(R) is regular.

Proof idea: Use induction!

 The atomic regular expressions all represent
regular languages.

 The combination steps represent closure
properties.

* So anything you can make from them must
be regular!



Thompson’s Algorithm

» In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAS).

 Read Sipser if you're curious!

 Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!
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Languages You Can
Write a Regex For




The Power of Regular Expressions

Theorem: It L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.



Generalizing NFAs




Generalizing NFAs




Generalizing NFAs

These are all regular
expressions!




Generalizing NFAs

start bub
©) ™

a ab*
@ a*b?a* @



Generalizing NFAs

start bub
)

ab*

a
@ a*b?a*

@

Note: Actual NFAs aren't
allowed To have fransitions
like these, This is just a
Thought experiment,
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Generalizing NFAs

start bub
©) ™

a ab*
@ a*b?a* @




Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular
expressions.



Generalizing NFAs

start ab U b ‘
a



Generalizing NFAs
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Generalizing NFAs

Is There a simple
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generalized NFA?




Generalizing NFAs

start 0 a*(.a*)*@a*(.a")*



Generalizing NFAs

start do a*(.a*)*@a*(.a")*

Is There a simple

reqular expression tor
the language ot this
generalized NFA?




Generalizing NFAs

--------------------

Is There a simple

reqular expression tor
the language ot this
generalized NFA?




Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

start ! some-regex
qo ) .. '

...then we can easily read off a regular
expression for the original NFA.




From NFAs to Regular Expressions

Rll R22
R12
start q, R21




From NFAs to Regular Expressions

Rll R22
R12
start
Here, Ri1, Kz, Roi, and &2 are
arbitrary reqular expressions,




From NFAs to Regular Expressions

Rll R22
R12
start q, R,
QuesTion: Can we get a clean
reqular expression trom This NFA?




From NFAs to Regular Expressions

Rll R22
R12
start q, R21

Key Idea 3: Somehow franstorm
This NFA so that it looks like fhis:

U N NN NS NN SN D NN NN NN BN SN SN NN

start ' some-regex
do ) ;




From NFAs to Regular Expressions

Rll R22
R12
start q, R21

The first sfep is going fo be a
bit weird..




From NFAs to Regular Expressions

Rll R22
R12



From NFAs to Regular Expressions

R R

11 22

e R12 &
star
() "{(e) »n @




From NFAs to Regular Expressions

R R

11 22

. Ry i
star e q, R, \qy




From NFAs to Regular Expressions

R R

11 22

. Ry i
star e d, R, \qy




From NFAs to Regular Expressions

R

11

. )
star G q1 R21 \qy ‘

Could we eliminate

this state trom
The NFA?




From NFAs to Regular Expressions

R R

11 22

] B i
star e q1 R21 \qy




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Note: We're using
concatenation and

Kleene closure in order
To skip this stafe,




From NFAs to Regular Expressions
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From NFAs to Regular Expressions
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From NFAs to Regular Expressions




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Rll* R12




From NFAs to Regular Expressions

Rll* R12

R22 U R21 R11>|< R12

Note: We're using union
To combine These
Transitions together,




From NFAs to Regular Expressions

star qs ( > ‘

R, UR, R,




From NFAs to Regular Expressions

star qs < > ‘

R, UR, R,




From NFAs to Regular Expressions

star qs < > ‘

R, UR, R,




From NFAs to Regular Expressions




From NFAs to Regular Expressions

What should we put on
This Transition?




From NFAs to Regular Expressions

R, *R,,(R,,UR R, *R )*¢

217711
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From NFAs to Regular Expressions

R, *R,,(R,,UR R, *R )*¢

217711




From NFAs to Regular Expressions

'F{11>|< R12 (RZZ U R R *RIZ)*

217711




From NFAs to Regular Expressions

star qd Rll>|< R12 (R22 U 1:{211:{11*1:{12)>I<



From NFAs to Regular Expressions

star qd Rll>|< R12 (R22 U 1:{211:{11*1:{12)>I<

R R

11 22

R12
start q, R21




The State-Elimination Algorithm

» Start with an NFA N for the language L.

- Add a new start state q_ and accept state g, to the
NFA.

- Add an e-transition from q_to the old start state of N.

- Add e-transitions from each accepting state of N to g, then
mark them as not accepting.

- Repeatedly remove states other than g_and g, from

the NFA by “shortcutting” them until only two states
remain: q_and ¢..

 The transition from q_to q.is then a regular
expression for the NFA.



The State-Elimination Algorithm

 To eliminate a state g from the automaton, do the following
for each pair of states gqo and g1, where there's a transition
from qo into g and a transition from g into gu:

- Let R, be the regex on the transition from qo to q.
- LetR_. Dbe the regex on the transition from q to qu.

- If there is a regular expression R,  on a transition from g

to itself, add a new transition from qo to g: labeled
((Rin) (Rstay)*(Rout)) ’

o If there isn't, add a new transition from qo to g: labeled
(R, )(R,,))

« If a pair of states has multiple transitions between them
labeled R1, Rz, ..., Rk, replace them with a single transition
labeled R1 U R2 U ... U R«.



Our Transftformations

direct conversion state elimination

DFA NFA Regexp

subset construction Thompson's algorithm



Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that (D) = L.

- There is an NFA N such that £(N) = L.
- There is a regular expression R such that £(R) = L.



Why This Matters

 The equivalence of regular expressions
and finite automata has practical
relevance.

 Regular expression matchers have all the
power available to them of DFAs and NFAs.

* This also is hugely theoretically
significant: the regular languages can be
assembled “from scratch” using a small
number of operations!



Next Time

 Applications of Regular Languages
 Answering “so what?”

* Intuiting Reqgular Languages
« What makes a language regular?

 The Myhill-Nerode Theorem

 The limits of regular languages.
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