

Regular Expressions

Recap from Last Time

Regular Languages

● A language L is a regular language if
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the language
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb },

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no

strings together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

● Question: What is Ø0?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages

together via closure properties to form L.
● We have not spoken much of this last

idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● This is a bottom-up approach to the
regular languages.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● This is a bottom-up approach to the
regular languages.

Regular Expressions

● Regular expressions are a way of describing a
language via a string representation.

● They’re used just about everywhere:
● They’re built into the JavaScript language and used for

data validation.
● They’re used in the UNIX grep and flex tools to search

files and build compilers.
● They’re employed to clean and scrape data for large-

scale analysis projects.
● Conceptually, regular expressions are strings

describing how to assemble a larger language out
of smaller pieces.

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression that
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular
expression for the language {a}.

● The symbol ε is a regular expression that
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is a
regular expression for the union of the languages
of R1 and R2.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Here’s the operator precedence for
regular expressions:

(R)

R*

R1R2

R1 ∪ R2

● So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expression Examples

● The regular expression trick∪treat represents
the language

{ trick, treat }.
● The regular expression booo* represents the

regular language

{ boo, booo, boooo, … }.
● The regular expression candy!(candy!)*

represents the regular language

{ candy!, candy!candy!, candy!candy!candy!, … }.

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)

● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*aa(a ∪ ∪ b)*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of
a string w is
denoted |w|

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪
b*(a ε)b*∪
b*a*b* b*∪
b*(a* ε)b*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)b*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q4
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

@, . @ @, .
 @

@, .

q0
a

@, .
Σ

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R⁰ = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ε)∪ , meaning

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Time-Out for Announcements!

Midterm Exam Logistics

● Our next Midterm runs this Friday, November 5th at
2:30PM through this Sunday, November 7th at 2:30PM,
Pacific time.
● That’s 49 hours rather than the normal 48. Huzzah!

● Topic coverage is primarily lectures 06 – 13 (functions
through induction) and PS3 – PS5. Finite automata and
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and

Lectures 00 – 05 are also fair game.
● Extra Practice Problems 2 is available on the course

website if you want to get more practice with these topics.
● We want you to do well on this exam. Keep in touch and

let us know what we can do to help make that happen!

Your Questions

“I know that one assignment, one test, or one
class doesn't define my ability to succeed in CS,
but is there a point that I really should consider
another career path if I still can't do well? If so,

where?”

If you’re really struggling with something, the first question to ask is “what am I
doing, and why isn’t it working?” That can be hard to ask because it requires
you to introspect on what your approach is, what parts are working, and what
aren’t. And often that requires chatting with someone more experienced to get
input on what you’re doing.

My recommendation would be to start with this and to size up where you are and
what energy would be required to change things. That will give you a roadmap
of what you need to do. From there, you can evaluate whether what you’re
doing is worth the time investment. If it is, great! Put in the time, be
circumspect, evaluate as you go, and you’ll be in good shape. If not, there’s
your answer. But I would avoid “jumping ship” until you have a clear answer to
this question, since it would be a real shame if you needed to only tune or
tweak a few things to get on a great track and you ended up walking away.

Back to CS103!

The Lay of the Land

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent

regular languages.
● The combination steps represent closure

properties.
● So anything you can make from them must

be regular!

Thompson’s Algorithm

● In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

These are all regular
expressions!

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀
start ab b∪ q₁

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for the original NFA.

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂ R , and ₂₁ R are ₂₂

arbitrary regular expressions.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean
regular expression from this NFA?

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform
this NFA so that it looks like this:

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R21 R11* R12

R22

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

What should we put on
this transition?

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The State-Elimination Algorithm

● Start with an NFA N for the language L.

● Add a new start state qs and accept state qf to the
NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf, then
mark them as not accepting.

● Repeatedly remove states other than qs and qf from
the NFA by “shortcutting” them until only two states
remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

The State-Elimination Algorithm

● To eliminate a state q from the automaton, do the following
for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled
((Rin)(Rout))

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This Matters

● The equivalence of regular expressions
and finite automata has practical
relevance.
● Regular expression matchers have all the

power available to them of DFAs and NFAs.
● This also is hugely theoretically

significant: the regular languages can be
assembled “from scratch” using a small
number of operations!

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145

