Nonregular Languages



Recap from Last Time



Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that ¥(D) = L.

- There is an NFA N such that ¥(N) = L.
- There is a regular expression R such that £(R) = L.



New Stuff!



Why does this matter?



Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

Take
CS148!
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https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/
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What exactly is a finite-state machine?



Finite-Memory
Computing Device




The Model

« The computing device has internal workings that can be
in one of finitely many possible configurations.

 Each state in a DFA corresponds to some possible
configuration of the internal workings.

« After each button press, the computing device does
some amount of processing, then gets to a configuration
where it's ready to receive more input.

 Each transition abstracts away how the computation is done
and just indicates what the ultimate configuration looks like.

« After the user presses the “done” button, the computer
outputs either YES or NO.

 The accepting and rejecting states of the machine model
what happens when that button is pressed.



Computers as Finite Automata

« My computer has 12GB of RAM and about
150GB of hard disk space.

 That's a total of 162GB of memory, which is
1,391,569,403,904 bits.

* There are “only” 21:391.569.403,904 pogssible
configurations of the memory in my
computer.

* You could in principle build a DFA
representing my computer, where there's one
symbol per type of input the computer can
receive.



A Powertful Intuition

* Regular languages correspond to problems
that can be solved with finite memory.

* At each point in time, we only need to store
one of finitely many pieces of information.

 Nonregular languages, in a sense, correspond
to problems that cannot be solved with finite
memory.

* Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved
by physical computers!



Finding Nonregular Languages



Finding Nonregular Languages

* To prove that a language is regular, we can just find a
DFA, NFA, or regex for it.

» To prove that a language is not regular, we need to
prove that there are no possible DFAs, NFAs, or
regexes for it.

* Claim: We can actually just prove that there's no DFA for it.
Why is this?

* This sort of argument will be challenging. Our
arguments will be somewhat technical in nature, since
we need to rigorously establish that no amount of
creativity could produce a DFA for a given language.

* Let's see an example of how to do this.



A Simple Language

 Let 2 = {a, b} and consider the following
language:

E={ab"|n €N}

* F is the language of all strings of n a's
tfollowed by n b's:

{ &, ab, aabb, aaabbb, aaaabbbb, ... }



A Simple Language

E={ab"|neN}

How many of the following are regular
expressions for the language E defined
above?

a*b*
(ab)*
€ U ab U a’b? U a’b’




Another Attempt

* Let’s try to design an NFA for
E ={ab"| n €N }.
* Does this machine work?

-0




Another Attempt

* Let’s try to design an NFA for
E ={ab"| n €N }.
« How about this one?

F b
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Another Attempt

* Let’s try to design an NFA for
E ={ab"| n €N }.
 What about this?




We seem to be running into some trouble.
Why is that?



Let's imagine what a DFA for the language
{ a"b" | n € N} would have to look like.

Can we say anything about it?



This isn't a single
transition. Think of it as
“after reading aaaa, we
end up at this state.”

These cannot be
the same state!

-
------
-

.....



A Different Perspective

aaaa aaaabbbb

aa aabbbb

What happens if gn is...

...an accepting state? We accept aabbbb ¢ E!
...a rejecting state? We reject aaaabbbb € E!




What’'s Going On?

* As you just saw, the strings a* and a? can't end up in
the same state in any DFA for E = {a"b" | n € N}.

 Two proof routes:

* Direct: The states you reach for a* and a? have to behave
differently when reading b* - in one case it should lead to
an accept state, in the other it should lead to a reject state.
Therefore, they must be different states.

« Contradiction: Suppose you do end up in the same state.
Then a*b* and a?b* end up in the same state, so we either
reject a*b* (oops) or accept a%b* (oops).

 Powerful intuition: Any DFA for E must keep a* and
a‘? separated. It needs to remember something
fundamentally different after reading those strings.



This idea - that two strings shouldn't end
up in the same DFA state - is fundamental
to discovering nonregular languages.

Let's go formalize this!



Distinguishability

 Let L be an arbitrary language over 2.

» Two strings x € 2* and y € 2* are called
distinguishable relative to L if there is a string
w € 2* such that exactly one of xw and yw is in L.

- We denote this by writing x =, y.
- In our previous example, we saw that a* Z_ a*.

« Try appending b* to both of them.
- Formally, we say that x Z, y if the following is true:

dJw e X*, (xweL e yw¢ L)



Distinguishability

« Theorem: Let L be an arbitrary language over . Let
X € 2* and y € ¥* be strings where x Z, y. Then if D is any

DFA for L, then D must end in different states when run on
inputs x and y.

 Proof sketch:







Distinguishability

* Let's focus on this language for now:
E ={a"h"|n €N}
Lemma: If m, n € N and m # n, then am Z_ a".

Proof: Let a™ and a"” be strings where m # n.
Then a™b™ € E and a"b™ ¢ E. Theretore, we
see that a” Z_ a", as required. W



A Bad Combination

* Suppose there is a DFA D for the language
E={ab"|n€eN }.

« We know the following:

* Any two strings of the form a™ and a”, where m # n,
cannot end in the same state when run through D.

 There are infinitely many strings of the form a™.

« However, there are only finitely many states they

can end up in, since D is a deterministic finite
automaton!

 What happens if we put these pieces together?



Theorem: The language E = { a"b" | n € N } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a° al, a?, ..., a*. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings a™ and a"” that end in the same state when run

through D.

Our lemma tells us that a™ Z; a", so by our earlier theorem
we know that a™ and a” cannot end in the same state when
run through D. But this is impossible, since we know that
a™ and a" do end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. i

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this
in the future, we'd recommend not using this proof as a template.




What Just Happened?

« We've just hit the limit of finite-
memory computation.

* To build a DFA for E = { a"b" | n € N },
we need to have different memory
configurations (states) for all possible
strings of the form a".

 There's no way to do this with finitely
many possible states!



Where We're Going

 We just used the idea of distinguishability to
show that no possible DFA can exist for
some language.

» This technique turns out to be pretty
powerful.

 We're going to see one more example of this
technique in action, then generalize it to an
extremely powerful theorem for finding
nonregular languages.



More Nonregular Languages



Another Language

* Consider the following language L over
the alphabet X = {a, b, =}:

EQ = { ww | w € {a, b}*}

 EQ is the language all strings consisting
of the same string of a's and b's twice,
with a £ symbol in-between.

 Examples:
abZab € EQ bbbZbbb € EQ = € EQ
abZba ¢ EQ bbbZaaa ¢ EQ b= ¢ EQ




Another Language

EQ = { wZw | w € {a, b}*}

» This language corresponds to the following
problem:

Given strings x, y € {3, b}*,
does x = y?

 We can think of things this way because
X =y if and only if xZy € EQ.

* Is this language regular?



The Intuition

EQ ={ wzw | w € {a, b}*}

 Intuitively, any machine for EQ has to be able
to remember the contents of everything to
the left of the = so that it can match them
against the contents of the string to the right
of the £.

 There are infinitely many possible strings we
can see, but we only have finite memory to
store which string we saw.

 That's a problem... can we formalize this?



The Intuition

y V=X

What happens if gn is...

...an accepting state? We accept y=x ¢ EQ!
...a rejecting state? We reject x=x € EQ!




Distinguishability

» Let's focus on this language for now:
EQ={ w=w | w € {a, b}*}

Lemma: It x, y € {3, b}* and x # y, then
X Zo V-

Proof: Let x and y be two distinct, arbitrary
strings from {a, b}*. Then we see that
x=x € EQ and y=x ¢ EQ, so we conclude that
X Z.,y, as required. W



Theorem: The language EQ = { w=w | w € {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x =., y. By our earlier theorem,

this means that x and y cannot end in the same state when
run through D. But this is impossible, since we specifically
chose x and y to end in the same state when run through

D.

We have reached a contradiction, so our assumption must
have been wrong. Thus EQ is not regular. l



Time-Out for Announcements!



Problem Set Five Scores

0-28 29 - 33 34 - 38 39 -43 44 - 48 49 - 53 54 - 58 59 - 63

75% Percentile: 58 / 63 (92%)
50t Percentile: 52 / 63 (83%)
25t Percentile: 46 / 63 (73%)




Midterm Exam Logistics

e Our next midterm runs this Friday, November 5" at
2:30PM through this Sunday, November 7% at 2:30PM,
Pacific time.

« That’s 49 hours rather than the normal 48. Huzzah!

» Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won'’t be tested here.

« Because the material is cumulative, topics from PS1 - PS2 and
Lectures 00 - 05 are also fair game.

 Extra Practice Problems 2 is available on the course
website if you want to get more practice with these topics.

 We want you to do well on this exam. Keep in touch and
let us know what we can do to help make that happen!



brw-{—h & gm((ﬂ/’.
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Your Questions



“My best friend is a philosophy enthusiast
and often tells me "CS is just a branch of
philosophy." How would you respond to the
statement?”

The boundaries between different disciplines are offen blurry, Our CS
faculty spans the range of folks working on improving the design of
buildings using computing (architecture, social psychology, urban
design, efc.) and people working on the theoretical limits of
computing machines (mathematics, probability, efc.). This is a good
thing - it means That there’s a lot ot cross—pollination ot ideas, 1t
also means it's hard To say something is *just* a branch of somefhing.




“Could you talk about the biomedical
computation major and some advantages to
following that path rather than the
traditional CS major (and possibly in
contrast to the biocomputation track)?”

There’s a decent amount of overlap between the two programs, BMC
has a bit more flexibilify Than biocomputation (fhere are fracks within
BMC; biocomputation is a track within CS)., Biocomputation has more of
a coding component and does a bit more with AI, It you're
inferested in exploring this space, it might make sense fo work
backwards from fhe program sheets fo figure out what works best for
you, (That’s good general advice with any similar majors.)




Back to CS103!



Comparing Proofs



Theorem: The language E = { a"b" | n € N } is not a regular
language.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E and let k be the number of states in
D.

Consider the strings a° al, a?, ..., a*. This is a collection of
k+1 strings and there are only k states in D. Therefore, by
the pigeonhole principle, there must be two distinct strings
a™ and a"” that end in the same state when run through D.

Our lemma tells us that a” Z_ a". By our earlier theorem we

know that a™ and a" cannot end in the same state when run
through D. But this is impossible, since we know that a™ and
a" do end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular.



Theorem: The language EQ = { w=w | w € {a, b}*} is not a
regular language.

Proof: Suppose for the sake of contradiction that EQ is regular.
Let D be a DFA for EQ and let k be the number of states in
D.

Consider any k+1 distinct strings in {a, b}*.These are k+1
strings and there are only k states in D. By the pigeonhole
principle, there must be two distinct strings x and y from this
group that end in the same state when run through D.

Our lemma tells us that x Z_, y. By our earlier theorem we

know that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, EQ is not regular.



For any number of stafes k, we
L= need a way To find k+1 strings so

that fwo of them get info the
same stafe..

Consider [ some k+1 specific strings. ]

[ Somehow we know ] that x &, y. =

. and all those sfrings need
fo be disfinguishable so thaf
we gel a contfradiction,




Distinguishing Sets

 Let L be a language over 2.

A distinguishing set for L is a set
S C 2* where the following is true:

VxeS.VyeS. x#y—->x=Z V)

¥ RS

1f you pick any two ....T\n.em The%'ye
strings in S that aren’d ohsﬂMWS\ﬂab\e
equal To one another.. relative To L.




Distinguishing Sets

 Let L be a language over 2.

A distinguishing set for L is a set
S C 2* where the following is true:

VX €S . VYyeES. (x2y—-xZ, y)

 As an example, here’s a distinguishing
setfor E={aBb"|n €N }:

S={a|neN}



Distinguishing Sets

 Let L be a language over 2.

A distinguishing set for L is a set
S C 2* where the following is true:

VX €S . VYyeES. (x2y—-xZ, y)

 As an example, here’s a distinguishing
set for EQ = { w=w | w € {a, b}*}:

S = {3, b}*



Theorem (Myhill-Nerode): If L is a
language and S is a distinguishing set for
L that contains infinitely many strings,
then L is not regular.



Proof: Let L be an arbitrary language over X and let S be a
distinguishing set for L that contains infinitely many strings.
We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This
means that there must be some DFA D for L. Let k be the number
of states in D. Since there are infinitely many strings in S, we can
choose k+1 distinct strings from S and consider what happens
when we run D on all of those strings. Because there are only k
states in D and we've chosen k+1 strings from S, by the
pigeonhole principle we know that at least two strings from S
must end in the same state in D. Choose any two such strings
and call them x and y.

Because x # y and S is a distinguishing set for L, we know that

X #; y. Our earlier theorem therefore tells us that when we run D
on inputs x and y, they must end up in different states. But this is
impossible - we chose x and y precisely because they end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. B



Using the Myhill-Nerode Theorem



Theorem: The language E = { a®b" | n € N } is
not regular.

Proof: Let S = { a® | n € N }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings a™, a® € S where m # n. Note
that amb™ € E and that a"b™ ¢ E. Therefore, we see
that a™ Z_ a", as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. i



Theorem: The language EQ = { w=w | w € {a, b}*}
is not reqgular.

Proof: Let S = {a, b}*. We will prove that S is
infinite
and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n € N,
we have a" € S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y € S where x # y. Then
x=x € EQ and y=x ¢ EQ. Therefore, x Z "y, as
required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. W



Approaching Myhill-Nerode

 The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

e General intuition:

« Start by thinking about what information a
computer “must” remember in order to answer
correctly.

 Choose a group of strings that all require
different information.

* Prove that you have infinitely many strings an
that the group of strings is a distinguishing set.



Tying Everything Together

* One of the intuitions we hope you develop for
DFAs is to have each state in a DFA represent
some key piece of information the automaton
has to remember.

* If you only need to remember one of finitely
many pieces of information, that gives you a
DFA.

* This can be made rigorous! Take CS154 for details.

» If you need to remember one of infinitely many
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language
has no DFA.



Where We Stand



Where We Stand

« We've ended up where we are now by trying to answer the
question “what problems can you solve with a computer?”

« We defined a computer to be DFA, which means that the
problems we can solve are precisely the regular languages.

« We've discovered several equivalent ways to think about
regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

« We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

« Putting all of this together, we have a much deeper sense
for what finite memory computation looks like - and what it
doesn't look like!



Where We're Going

 What does computation look like with
unbounded memory?

 What problems can you solve with
unbounded-memory computers?

« What does it even mean to “solve” such a
problem?

 And how do we know the answers to any
of these questions?



Next Time

 Context-Free Languages

 Context-Free Grammars
* Generating Languages from Scratch
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