Context-Free Grammars

A Motivating Question

0@ python3

>>2>

0@ python3

>>> (137 + 42) - 2 * 3

0@ python3

>>> (137 + 42) - 2 * 3
173

>>>

0@ python3

>>> (137 + 42) - 2 * 3
173

>>> (60 + 37) + 5 * 8

ryer oython3

>>> (137 + 42) - 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>>

ryer oython3

>>> (137 + 42) - 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 [/ 2) + 6 [2

ryer oython3

>>> (137 + 42) - 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 [/ 2) + 6 [/ 2
103.0

>>2>

Mad Libs for Arithmetic

()

Int Op Int Op Int Op Int

Slide credit: Amy Liu

Mad Libs for Arithmetic

(26 + 42)* 2 + 1

Int Op Int Op Int Op Int

Slide credit: Amy Liu

Mad Libs for Arithmetic

()

Int Op Int Op Int Op Int

Slide credit: Amy Liu

Mad Libs for Arithmetic

(7 * 5)/ 5 - 49

Int Op Int Op Int Op Int

Slide credit: Amy Liu

Mad Libs for Arithmetic

()

Int Op Int Op Int Op Int

This only lets us make arithmetic expressions
of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?

Slide credit: Amy Liu

Recursive Mad Libs

Expr

Recursive Mad Libs

Expr

What can an arithmetic expression be?

Recursive Mad Libs

int

Expr

What can an arithmetic expression be?

int A single number.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

int

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

int +

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

(int)
Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

Expr Op Expr

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

A context-free grammar (or CFG) is a
recursive set of rules that define a
language.

(There’s a bunch of specific requirements about
what those rules can be; more on that in a bit.)

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

N

Expr — int

Expr — Expr Op Expr

Expr — (Expr)

Op =+ This is called a
Op - - production rule, 1t
Op - x says ‘it you see Expr,
you can replace it with
OP -/ Expr Op Expr.”

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr

Expr — (Expr)

—
This one says ‘it you
see Op, you can

replace it with =,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int Expr

= Expr Op Expr
Expr — Expr Op Expr — Expr Op int
Expr - (Expr) = int Op int
Op — + = 1nt / 1int
Op - -
()p — X

Op -/

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr
Expr — (Expr)

Op -+
Op - -
Op - x
Op -/

Expr

Expr Op Expr
Expr Op int
int Op int
int / int

Ly

These red symbols are
called nonterminals.
They're placeholders fhaf
get expanded later on,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr
Expr — (Expr)

Op -+
Op - -
Op - x
Op -/

Ly

Expr

Expr Op Expr
Expr Op int
int Op int

int / int}\

The sumbols in blue
monospace are terminals,
They've the final characters
used in the string and
never gel replaced,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr

Expr Op Expr

Expr Op (Expr)

Expr Op (Expr Op Expr)

Expr — int
Expr — Expr Op Expr
Expr — (Expr)

Op - + Expr x (Expr Op Expr)
Op — - int x (Expr Op Expr)

int x (i1nt Op Expr)
Op - x int x (int Op int)

L v u Ul

Op - / int x (1nt + 1int)

Context-Free Grammars

+ Formally, a context-free grammar |EXpr — int
is a collection of four items: Expr — Expr Op Expr

* a set of nonterminal symbols Expr - (Expr)
(also called variables), Op — +
* a set of terminal symbols (the Op — -
alphabet of the CFG), p
()p — X

* a set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

Op-/

* a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the first production.

Some CFG Notation

* In today’s slides, capital letters in Bold Red
Uppercase will represent nonterminals.

*eg.A, B, C,D

 Lowercase letters in blue monospace will represent
terminals.

*eqg.tuvw

 Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.

ceg.a,y w

* You don't need to use these conventions on your
own; just make sure whatever you do is readable.

A Notational Shorthand

Expr — 1int

Expr —» Expr Op Expr
Expr - (Expr)

Op -+
Op - -
Op - %
Op-/

A Notational Shorthand

Expr — int | Expr Op Expr | (Expr)
Op-+ | - [x]/

Derivations

Expr * A sequence of zero or more
= Expr Op Expr steps where nonterminals are
replaced by the right-hand
side of a production is called a
= Expr Op (Expr Op Expr) derivation.

= Expr x (Expr Op Expr) .

= Expr Op (Expr)

If string a derives string w,

= int x (Expr Op Expr) we write a =" w.

= int x (int Op Expr) * In the example on the left, we
= int x (int Op int) see that

= int x (int + int) Expr ="1int x (int + int).

Expr — int | Expr Op Expr | (Expr)

Op—-+ | - | x|/

The Language of a Grammar

» If G is a CFG with alphabet ¥ and start
symbol S, then the language of G is the
set

FGE)={weX* | S="w}

 That is, £(G) is the set of strings of
terminals derivable from the start
symbol.

If G is a CFG with alphabet 2 and start symbol S,
then the language of G is the set

FG)={weX*|S=*w}

Consider the following CFG G over 2 = {a, b, ¢, d}:

S - Sa|dT
T -bIb | c

Which of the following strings are in £(G)?

dca
dc
cad
bcb
dTaa

Context-Free Languages

A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = ¥(G).

 Questions:

« How are context-free and regular languages
related?

« How do we design context-free grammars for
context-free languages?

Context-Free Languages

« How are context-free and regular languages
related?

Five Possibilities

CFGs and Regular Expressions

 CFGs consist purely of production rules of the
form A - w. They do not have the regular
expression operators * or u.

* You can use the symbols * and u if you'd like in
a CFG, but they just stand for themselves.

 Consider this CFG G:
S — a*b

 Here, ¥(G) = {a*b} and has cardinality one.
Thatis, (G) # { a’b| n € N }.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

a (buege)c

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

a (bue)c

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

S - aXc

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

It’s totally fine for a
production to replace a
nonterminal with the
empty string.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

(auUb)2c*

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

(auUb)2c*

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

S - XY

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

S - XY

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

V4
S - XY i

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

S - XY n
q

X
X - ZZ

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

Two _B#ve Possibilities

O® &8

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

S

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alS|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

a S b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alal/S|b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

al a S b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alalalS|b|b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alala S b(b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alalala|lS|b|/b|b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alajala b b|b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alalalalb|b|b|b

The Language of a Grammar

* Consider the following CFG G:
S - aSh | ¢

 What strings can this generate?

alalalalb|b|b|b
$Y(G)={ab"|n€N }

Regular

Languages

All Languages

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €
S

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

alS|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

a S b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

alal/S|b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

al a S b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

alalalS|b|b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

alala S b(b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €

alalala|lS|b|/b|b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €
alajala b b|b|b

Why the Extra Power?

« Why do CFGs have more power than
regular expressions?

 Intuition: Derivations of strings have
unbounded “memory.”

S - aSh | €
alalalalb|b|b|b

Time-Out for Announcements!

Problem Set Seven

* Problem Set Six was due today at
2:30PM.

* Problem Set Seven goes out today. It’s
due next Friday at 2:30PM.

« It’s all about regular expressions, properties
of regular languages, and gives a first
glimpse at nonregular languages.

 We realistically don’t expect you to look at
this until Monday when you’ve finished the
midterm.

Midterm Exam Logistics

* Our next midterm runs today (Friday,

November 5%*) through Sunday, November 7% at
2:30PM, Pacific time.

e That’s 49 hours rather than the normal 48. Huzzah!

» Topic coverage is primarily lectures 06 - 13
(functions through induction) and PS3 - PSb5.
Finite automata and onward won’t be tested
here.

 Because the material is cumulative, topics from
PS1 - PS2 and Lectures 00 - 05 are also fair game.

* Best of luck on the exam - you can do this!

Our Advice

* Stay fed and rested. You are not a brain in a
jar. You are a rich, complex, beautiful human
being. Please take care of yourself.

* Read all questions before diving into them.
You don’t have to go sequentially. Read over each
problem so you know what to expect, then pick
whichever one looks easiest and start there.

* Reflect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark
that you're learning something!

Your Questions

“have you ever felt like you were "running
out of time" or "behind" your peers, and
how did you deal with those feelings?”

Oh yeah, definifely, That's a human universal,

My recommendation is to take the statement *I am supposed fo be
further ahead by this point” and nofice it’s in fhe passive voice,
Who, exactly, is doing fhe supposing? And why do they ‘suppose’ it?
And why does someone else supposing something make you feel bad?

1t's one thing to think *wow, I know amazing people who have
accomplished a lot, or done things I havent done, etc.” 1t's another
fo then say *and that diminishes me because someone specific expects
me fo have done something similar already.” Keep those separate, Be
proud of whaf you have done, Be inspired by those around you to
do more, But dont feel guilty about it,

As for *running oul of time” - most doors in lite never slam shut
and insfead just gef harder fo open as time progresses.

“What is one moment in your life that you
wish there was a camera there filming
you?”

This one! And 1
got my wish,

Back to CS103!

Designing CFGs

» Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

 When thinking about CFGs:

 Think recursively: Build up bigger structures
from smaller ones.

 Have a construction plan: Know in what
order you will build up the string.

 Store information in nonterminals: Have
each nonterminal correspond to some useful
piece of information.

Designing CFGs

elet2 ={a,b}andletL = {w € 2*| wis
a palindrome }

 We can design a CFG for L by thinking
inductively:
 Base case: g, a, and b are palindromes.

e If w is a palindrome, then awa and bwb are
palindromes.

* No other strings are palindromes.

S—>e|a|b|aSa|bSb

Designing CFGs

e let2={{ }}andletL={w e X*|wisa
string of balanced braces }

 Some sample strings in L:

{{{}}}

{{}H}
{{HIH{H})
{{{{{}}{{}}}}

(3

{H}

Designing CFGs

e let2={{ }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

 Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace.

{{{UHUG P U AL

Designing CFGs

e let2={{ }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

 Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace.

{03 {3 {1}

Designing CFGs

e let2={{ }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

 Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace.

(L0 MO0

Designing CFGs

e let2={{ }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

 Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace.

{{}{{}}}{{}}E{{}}{{{}}}

Designing CFGs

e let2={{, }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

 Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace. Removing the first
brace and the matching brace forms two new
strings of balanced braces.

S > {S}S |«

Designing CFGs

elet2={a,b}jandletL ={weX*|w
has the same number of a's and b's }

How many of the following CFGs have language L?

Designing CFGs

elet2={a,b}jandletL ={weX*|w
has the same number of a's and b's }

How many of the following CFGs have language L?

Designing CFGs

elet2={a,b}jandletL ={weX*|w
has the same number of a's and b's }

How many of the following CFGs have language L?

Designing CFGs

elet2={a,b}jandletL ={weX*|w
has the same number of a's and b's }

How many of the following CFGs have language L?

Designing CFGs

elet2={a,b}jandletL ={weX*|w
has the same number of a's and b's }

How many of the following CFGs have language L?

Designing CFGs: A Caveat

 When designing a CFG for a language,
make sure that it

* generates all the strings in the language and

* never generates a string outside the
language.

* The first of these can be tricky - make
sure to test your grammars!

* You'll design your own CFG for this
language on Problem Set 8.

CFG Caveats II

* Is the tollowing grammar a CFG for the
language { a’b" | n € N }?

S - aSb

 What strings in {a, b}* can you derive?
« Answer: None!

 What is the language of the grammar?
 Answer: @

« When designing CFGs, make sure your
recursion actually terminates!

Designing CFGs

* When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

e IletX = {a, £} andletL = {a"Za" | n € N }.
 Is the following a CFG for L?
S - X=X
X—-aX | €

Finding a Build Order

. Let > = {a, 2} and let L = {a"%a" | n € N }.

 To build a CFG for L, we need to be more clever with
how we construct the string.

 If we build the strings of a's independently of one
another, then we can't enforce that they have the
same length.

« Idea: Build both strings of a's at the same time.
 Here's one possible grammar based on that idea:
S - £ | aSa S
aSa
aadSaa

aaa§aaa
d3dd=aaa

bu v

Function Prototypes

e Let 2 = {void, int, double, name, (,), ,, ;}.

* Let's write a CFG for C-style function
prototypes!

 Examples:

void name(int name, double name);
int name();

int name(double name);

int name(int, int name, int);

void name(void);

Function Prototypes

* Here's one possible grammar:
* S — Ret name (Args);
 Ret - Type | void
* Type — int | double
 Args - € | void | ArgList
 ArgList - OneArg | ArgList, OneArg
* OneArg - Type | Type name
 Fun question to think about: what changes

would you need to make to support pointer
types?

Summary of CFG Design Tips

* Look for recursive structures where they exist:
they can help guide you toward a solution.

* Keep the build order in mind - often, you'll
build two totally different parts of the string
concurrently.

« Usually, those parts are built in opposite directions:
one's built left-to-right, the other right-to-left.

» Use different nonterminals to represent
different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages

BLOCK - STMT
| { STMTS }

STMTS - ¢
| STMT STMTS

STMT - EXPR;
if (EXPR) BLOCK

while (EXPR) BLOCK

do BLOCK while (EXPR);
BLOCK

EXPR — 1dentifier
constant
EXPR + EXPR
EXPR - EXPR
EXPR * EXPR

Grammars in Compilers

* One of the key steps in a compiler is figuring out
what a program “means.”

* This is usually done by defining a grammar showing
the high-level structure of a programming language.

 There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

* Tools like yacc or bison automatically generate
parsers from these grammars.

e Curious to learn more? Take CS143!

Natural Language Processing

* By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning

of a sentence.

* In fact, CFGs were first called phrase-structure
grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

 They were then adapted for use in the context of
programming languages, where they were called Backus-

Naur forms.
 The Stanford Parser project is one place to look for
an example of this.

e Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

* No Class on Monday
* You earned it!
 Turing Machines

« What does a computer with unbounded
memory look like?

« How would you program it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137

