

Context-Free Grammars

A Motivating Question

python3

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2
103.0

>>>

Mad Libs for Arithmetic

 26 + 42 * 2 + 1
Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

 7 * 5 / 5 - 49
Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

This only lets us make arithmetic expressions
of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

int + int

A context-free grammar (or CFG) is a
recursive set of rules that define a

language.

(There’s a bunch of specific requirements about
what those rules can be; more on that in a bit.)

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

This is called a
production rule. It
says “if you see Expr,
you can replace it with

Expr Op Expr.”

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

This one says “if you
see Op, you can
replace it with -.”

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

These red symbols are
called nonterminals.

They’re placeholders that
get expanded later on.

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

The symbols in blue
monospace are terminals.
They’re the final characters

used in the string and
never get replaced.

Arithmetic Expressions

● Here’s how we might express the
recursive rules from earlier as a CFG.

Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Context-Free Grammars

● Formally, a context-free grammar
is a collection of four items:

● a set of nonterminal symbols
(also called variables),

● a set of terminal symbols (the
alphabet of the CFG),

● a set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

● a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the first production.

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

Some CFG Notation

● In today’s slides, capital letters in Bold Red
Uppercase will represent nonterminals.
● e.g. A, B, C, D

● Lowercase letters in blue monospace will represent
terminals.
● e.g. t, u, v, w

● Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.
● e.g. α, γ, ω

● You don't need to use these conventions on your
own; just make sure whatever you do is readable. 😃

A Notational Shorthand

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → +

Op → -

Op → ×

Op → /

A Notational Shorthand

Expr → int | Expr Op Expr | (Expr)

Op → + | - | × | /

Derivations

⇒ Expr

⇒ Expr Op Expr

⇒ Expr Op (Expr)

⇒ Expr Op (Expr Op Expr)

⇒ Expr × (Expr Op Expr)

⇒ int × (Expr Op Expr)

⇒ int × (int Op Expr)

⇒ int × (int Op int)

⇒ int × (int + int)

● A sequence of zero or more
steps where nonterminals are
replaced by the right-hand
side of a production is called a
derivation.

● If string α derives string ω,
we write α ⇒* ω.

● In the example on the left, we
see that

Expr ⇒* int × (int + int).

Expr → int | Expr Op Expr | (Expr)

Op → + | - | × | /

The Language of a Grammar

● If G is a CFG with alphabet Σ and start
symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ G) is the set of strings of

terminals derivable from the start
symbol.

Consider the following CFG G over Σ = {a, b, c, d}:

S → Sa | dT
T → bTb | c

Which of the following strings are in (ℒ G)?

dca
dc
cad
bcb
dTaa

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

Context-Free Languages

● A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = (ℒ G).

● Questions:
● How are context-free and regular languages

related?
● How do we design context-free grammars for

context-free languages?

Five Possibilities

REG CFL

REG
CFL

REG CFL CFLREG

REG CFL

CFGs and Regular Expressions

● CFGs consist purely of production rules of the
form A → ω. They do not have the regular
expression operators * or ∪.

● You can use the symbols * and ∪ if you’d like in
a CFG, but they just stand for themselves.

● Consider this CFG G:

S → a*b
● Here, (ℒ G) = {a*b} and has cardinality one.

That is, (ℒ G) ≠ { anb | n ∈ ℕ }.

CFGs and Regular Expressions

● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε) X → b | ε

 S → aXc

X

c

It’s totally fine for a
production to replace a
nonterminal with the

empty string.

CFGs and Regular Expressions

● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 X → ZZ

 S → XY

 Y → cY | ε
X Y

(a b)∪ c *²

Z

 Z → a | b

Five Possibilities

REG
CFL

REG CFL

Two

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }

a ba ba ba b

Regular
Languages CFLs

All Languages

Why the Extra Power?

● Why do CFGs have more power than
regular expressions?

● Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

a ba ba ba b

Time-Out for Announcements!

Problem Set Seven

● Problem Set Six was due today at
2:30PM.

● Problem Set Seven goes out today. It’s
due next Friday at 2:30PM.
● It’s all about regular expressions, properties

of regular languages, and gives a first
glimpse at nonregular languages.

● We realistically don’t expect you to look at
this until Monday when you’ve finished the
midterm.

Midterm Exam Logistics

● Our next midterm runs today (Friday,
November 5th) through Sunday, November 7th at
2:30PM, Pacific time.
● That’s 49 hours rather than the normal 48. Huzzah!

● Topic coverage is primarily lectures 06 – 13
(functions through induction) and PS3 – PS5.
Finite automata and onward won’t be tested
here.
● Because the material is cumulative, topics from

PS1 – PS2 and Lectures 00 – 05 are also fair game.
● Best of luck on the exam – you can do this!

Our Advice

● Stay fed and rested. You are not a brain in a
jar. You are a rich, complex, beautiful human
being. Please take care of yourself.

● Read all questions before diving into them.
You don’t have to go sequentially. Read over each
problem so you know what to expect, then pick
whichever one looks easiest and start there.

● Reflect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark
that you’re learning something!

Your Questions

“have you ever felt like you were "running
out of time" or "behind" your peers, and
how did you deal with those feelings?”

Oh yeah, definitely. That’s a human universal. 😃

My recommendation is to take the statement “I am supposed to be
further ahead by this point” and notice it’s in the passive voice.

Who, exactly, is doing the supposing? And why do they “suppose” it?
And why does someone else supposing something make you feel bad?

It’s one thing to think “wow, I know amazing people who have
accomplished a lot, or done things I haven’t done, etc.” It’s another
to then say “and that diminishes me because someone specific expects
me to have done something similar already.” Keep those separate. Be
proud of what you have done. Be inspired by those around you to

do more. But don’t feel guilty about it.

As for “running out of time” – most doors in life never slam shut
and instead just get harder to open as time progresses.

“What is one moment in your life that you
wish there was a camera there filming

you?”

This one! And I
got my wish. 😃

Back to CS103!

Designing CFGs

● Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger structures

from smaller ones.
● Have a construction plan: Know in what

order you will build up the string.
● Store information in nonterminals: Have

each nonterminal correspond to some useful
piece of information.

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is
a palindrome }

● We can design a CFG for L by thinking
inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Some sample strings in L:

{{{}}}

{{}}{}

{{}{}}{{}{}}

{{{{{}}}{{}}}}

ε

{}{}

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the first open brace. Removing the first
brace and the matching brace forms two new
strings of balanced braces.

S → {S}S | ε

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w
has the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs: A Caveat

● When designing a CFG for a language,
make sure that it
● generates all the strings in the language and
● never generates a string outside the

language.
● The first of these can be tricky – make

sure to test your grammars!
● You'll design your own CFG for this

language on Problem Set 8.

CFG Caveats II

● Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb

● What strings in {a, b}* can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your
recursion actually terminates!

Designing CFGs

● When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● To build a CFG for L, we need to be more clever with

how we construct the string.
● If we build the strings of a's independently of one

another, then we can't enforce that they have the
same length.

● Idea: Build both strings of a's at the same time.

● Here's one possible grammar based on that idea:

S → ≟ | aSa S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

Function Prototypes

● Let Σ = {void, int, double, name, (,), ,, ;}.
● Let's write a CFG for C-style function

prototypes!
● Examples:

● void name(int name, double name);

● int name();

● int name(double name);

● int name(int, int name, int);

● void name(void);

Function Prototypes

● Here's one possible grammar:
● S → Ret name (Args);
● Ret → Type | void
● Type → int | double
● Args → ε | void | ArgList
● ArgList → OneArg | ArgList, OneArg
● OneArg → Type | Type name

● Fun question to think about: what changes
would you need to make to support pointer
types?

Summary of CFG Design Tips

● Look for recursive structures where they exist:
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll
build two totally different parts of the string
concurrently.
● Usually, those parts are built in opposite directions:

one's built left-to-right, the other right-to-left.
● Use different nonterminals to represent

different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages
BLOCK → STMT

 | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
 | if (EXPR) BLOCK

 | while (EXPR) BLOCK
 | do BLOCK while (EXPR);
 | BLOCK
 | …

EXPR → identifier
 | constant

 | EXPR + EXPR
 | EXPR – EXPR
 | EXPR * EXPR
 | ...

Grammars in Compilers

● One of the key steps in a compiler is figuring out
what a program “means.”

● This is usually done by defining a grammar showing
the high-level structure of a programming language.

● There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

● Tools like yacc or bison automatically generate
parsers from these grammars.

● Curious to learn more? Take CS143!

Natural Language Processing

● By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning
of a sentence.
● In fact, CFGs were first called phrase-structure

grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

● They were then adapted for use in the context of
programming languages, where they were called Backus-
Naur forms.

● The Stanford Parser project is one place to look for
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

● No Class on Monday
● You earned it!

● Turing Machines
● What does a computer with unbounded

memory look like?
● How would you program it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

