Turing Machines

Part Two



Outline for Today

« The Church-Turing Thesis
- Just how powertul are TMs?

e What Does it Mean to Solve a
Problem?

- Rethinking what “solving” a problem
means, and two possible answers to that
question.



Recap from Last Time



Turing Machines

A Turing machine is a program that controls a
tape head as it moves around an infinite tape.

e There are six commands:

— Move direction

- Write symbol

— Goto label

— Return boolean

— If symbol command

— If Not symbol command

* Despite their limited vocabulary, TMs are
surprisingly powertul.



A Sample Turing Machine

 Here’s a sample TM.

e It receives inputs
over the alphabet
> ={a, b}.

 What strings does
this TM accept?

 Can you write a
regex that matches
precisely the strings
this TM accepts?

Start:
If Not 'a' Return False

Loop:
Move Right
If Not Blank Goto Loop
Move Left
Move Left
If Not 'b' Return False

Return True




What Can We Do With a TM?

 Last time, we saw TMs that

- check if a string has the form a"b",

- check if a string has the same number of a’s and b’s,
- sort a string of a’s and b’s,

- check if a string’s length is a Fibonacci number,

- convert the decimal number n into the string a", and
- check if a decimal number is a Fibonacci number.

* This hints at the idea that TMs might be more
powertul than they look.



New Stuff!



Main Questions for Today:
Just how powerful are Turing machines?

What problems can you solve with a computer?



Real and “Ideal” Computers

* A real computer has memory limitations: you
have a finite amount of RAM, a finite amount of
disk space, etc.

« However, as computers get more and more
powertful, the amount of memory available keeps
Increasing.

 An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular computer,
but never runs out of memory.



Theorem: Turing machines are equal in
power to idealized computers. That is,
any computation that can be done on a

TM can be done on an idealized computer
and vice-versa.



Key Idea: Two models of computation
are equally powerful if they can
simulate each other.



Simulating a TM

 The individual commands in a TM are simple and
perform only basic operations:

Move Write Goto Return If

« The memory for a TM can be thought of as a string
with some number keeping track of the current index.

 To simulate a TM, we need to
- see which line of the program we’re on,
- determine what command it is, and

- simulate that single command.

* Claim: This is reasonably straighttorward to do on an
idealized computer.

- My “core” logic for the TM simulator is under fifty lines of
code, including comments.



Simulating a TM

 Because a computer can simulate each
individual TM instruction, a computer
can do anything a TM can do.

 Key Idea: Even the most complicated
TM is made out of individual
instructions, and if we can simulate
those instructions, we can simulate an
arbitrarily complicated TM.



Simulating a Computer

 Programming languages provide a set of simple
constructs.

- Think things like variables, arrays, loops, functions,
classes, etc.

* You, the programmer, then combine these basic
constructs together to assemble larger
programs.

 Key Idea: If a TM is powertul enough to
simulate each of these individual pieces, it’s
powertul enough to simulate anything a real
computer can do.



What We've Seen

 We've seen TMs use loops to solve problems.

- Our { a'b" | n € N } TM repeatedly pulls off the
first and last character from the string.

- Our sorting TM repeatedly finds ba and replaces
it with ab.

 In some sense, the existence of Goto and
labels means that TMs have loops.

» Hopetully, it’s not too much of a stretch to
think that TMs can do while loops, for loops,
etc.



What We've Seen

 We've seen TMs that perform basic
arithmetic.

- We can check if two numbers are equal.

- We can check if a number is a Fibonacci
number.

* Hopetully, it’s not too much of a stretch
to believe we could also do addition and
subtraction, compute powers of numbers,
do ceilings and floors, etc.



What We've Seen

« We’'ve seen TMs that maintain variables.

- You can think of our TM for { a’b" | n € N } as
storing two variables - one that counts a number
of a’s, and one that counts a number of b’s.

- Our TM for Fibonacci numbers kinda sorta ish
tracks the last two Fibonacci numbers, plus the
length of the input string.

* It’s a bit larger of a jump to make, but
hopefully you're comtortable with the idea
that TMs, in principle, can maintain
variables.



What We've Seen

 We’ve seen TMs with helper functions.

- We saw how to check for equal numbers of a’s
and b’s by first sorting the string, then checking
of the string has the form a"b".

- We can check if a decimal number is a
Fibonacci number by converting it to unary,
then running our unary Fibonacci checker.

 Hopefully you’re comfortable with the idea
that a TM could have multiple “helper
functions” that work together to solve some
larger problem.



What Else Can TMs Do?

 Maintain strings and arrays.

- Store their elements separated with some
special separator character.

 Support pointers.

- Maintain an array of what’s in memory,
where each item is tagged with its “memory
address.”

* Support function call and return.

- It’s hard, but you can do this if you can do
helper functions and variables.



A CS107 Perspective

» Internally, computers execute by using basic
operations like

- simple arithmetic,

- memory reads and writes,
- branches and jumps,

- register operations,

- etc.

 Each of these are simple enough that they
could be simulated by a Turing machine.



A Leap of Faith

* Claim: A 'TM is powerful enough to simulate any
computer program that gets an input, processes

that input, then returns some result.
input %Computational g

Device @

 The resulting TM might be colossal, or really slow,
or both, but it would still faithfully simulate the
computer.

« We're going to take this as an article of faith in
CS103. If you curious for more details, come talk to
me after class.



Can a TM Work With...

“cat pictures?”

Sure! A piclure is
just a 2D array of
colors, and a color
can be representfed
as a series ot

numbers,



Can a TM Work With...

" ° 24

It you think aboud

“cat videos?” i1, a video is just a
series ot pictures:

W gt iy B



Can a TM Work With...

“music?” Sure! Music is encoded as a
compressed wavetorm, That’s
just a list ot numbers,

“deep learning?” Surer That's just applying a
bunch ot matrices and

nonlinear functions to some
input,



Just how powertul are Turing machines?



Effective Computation

 An effective method of computation is a form
of computation with the following properties:

- The computation consists of a set of steps.

- There are fixed rules governing how one step leads
to the next.

- Any computation that yields an answer does so in
finitely many steps.

- Any computation that yields an answer always yields
the correct answer.

« This is not a formal definition. Rather, it's a set
of properties we expect out of a computational
system.



The Church-Turing Thesis claims that

every effective method of computation
is either equivalent to or weaker than
a Turing machine.

“This is not a theorem - it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



Problems
Regular solvable by
Languages Turing

Machines

All Languages




TMs and Computation

* Because Turing machines have the same
computational powers as regular computers, we
can (essentially) reason about Turing machines
by reasoning about actual computer programs.

* Going forward, we're going to switch back and
forth between TMs and computer programs
based on whatever is most appropriate.

* In fact, our eventual proofs about the existence
of impossible problems will involve a good
amount of pseudocode. Stay tuned for details!



Time-Out for Announcements!



Problem Set 8

* Problem Set Seven was due at 2:30PM today.

* Problem Set Eight goes out today. It’s due next
Friday at 2:30PM.

- Construct context-free grammars and explore their
expressive power.

- Probe the interface between regular and nonregular
languages.

- Tinker with TMs and what it’s like to build all
computation from smaller pieces.

* You know the drill: come talk to us if you have
any questions, and let us know what we can do to
help out.



Your Questions



“I ended up in the bottom quintile on midterm 2, significantly
worse than I did on midterm 1. Any tips for not taking this as a
sign that I should so something other than CS? I know that this
sounds like an emotional overreaction, but I also really bricked

a technical interview that I spent a lot of time preparing for
earlier this week. I'm constantly worried that I'm worse at this
than everyone else, and there seems to be enough evidence to

back that worry up. :(“

For starfers, it sounds like you've a rough week, and I'm sorry to hear that,

As much as is possible, disfinguish between *this exam didnt go well for me” and *I am
objectively not good at this.” Everyone has fhe experience of an inferview that didnt go
well and an exam that didnt go well, It's not a fun experience (can confirm). Do the
Things you need to do 1o dust off and gef back to a good frame of mind, then look
back and do the analysis to see what you need to learn and what you can do differently
for next fime, Youwre always learning and picking up new skills — try fo focus that growth
in areas that have the biggest difference.

As for how ofher folks are doing: by definition half of the students in CS103 will end up
in the botfom half of the course. Relafive positioning is much less imporfant than you
might Think, What mafters in the long run is what you've learned and what you can do
going forward, not whether other people can do it betfer than you.




Remember that...

.. you are smart,

... you are creative,

... you are competent, and that
.. you are hardworking.

The material in CS103 is challenging. It’s
legitimately tough. We’'re confident you
can do this. Let us know how we can help.



“Favorite movies?“

‘Black Orpheus:” Starts strong and never lets up.

*The Darjeeling Limited:* Wondertul escapist tamily drama,

*The Good, The Bad, and The Ugly:* I1's a classic tor a reason,

‘Rules of the Game:* 1939 pre—war social commentary that’s sfill relevant,
M2 Angry Men:* Proof that you can have incredible drama in one room.
‘Le Samourai:* Incredible character study .

‘Brazil:* Dystopian science fiction story that feels alarmingly recognizable,
‘Fanfasia:* Sit back, relax, listen, and unwind.

‘Seven Samurai,” *Yojimbo,” *The Hidden Fortress,” ‘Ikiru:* There’s a reason
Kurosawa is such a legend, These films influenced so many future ones.
*‘Cify of God:* Funny, darkly serious, terrifying, and well—acted.

*There Will Be Blood:” Daniel Day Lewis’'s pertormance will stick with you for
a long fime atter watching this one,

‘Lawrence of Arabia:* Sweeping epic in The best sense of the word.
*Amelie:” Beautiful movie, beautiful soundirack.

‘Unforgiven:* Deconstruction ot the Western archefype.

‘Liftle Miss Sunshine:* One of the funniest movies I've ever seen,

*My Neighbor Totoro:” The most wholesome movie I've ever seen,

*Back to the Fufure:” Why is This movie so good?




Back to CS103!



Decidability and Recognizability



What problems can we solve with a computer?
A

What does it
mean To ‘solve”
a problem?



The Hailstone Sequence

* Consider the following procedure,
starting with some n € N, where n > 0:

- If n =1, you are done.

- If niseven, setn=n/2.
- Otherwise, set n = 3n + 1.
- Repeat.

* Question: Given a natural number
n > 0, does this process terminate?



1

34 <«

52
40
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- If n =1, stop.

-Ifniseven, setn=n/2.
- Otherwise, set n = 3n + 1.
- Repeat.

16



The Hailstone Sequence

* Consider the following procedure, starting with
some n € N, where n > 0O:

- If n =1, you are done.

- If niseven,setn=n/2.
- Otherwise, set n = 3n + 1.
- Repeat.

 Does the Hailstone Sequence terminate for...
- n=>5"7
- n= 207
-n=77
-n=277



The Hailstone Sequence

 Let 2 = {a} and consider the language

L ={a"| n> 0 and the hailstone
sequence terminates for n }.

* Could we build a TM for L7



The Hailstone Turing Machine

« We can build a TM that works as follows:

- If the input is g, reject.

- While the string is not a:

« If the input has even length, halve the length of
the string.

e If the input has odd length, triple the length of
the string and append a a.

- Accept.



Does this Turing machine accept all
nonempty strings?



The Collatz Conjecture

* It is unknown whether this process will terminate for
all natural numbers.

* In other words, no one knows whether the TM
described in the previous slides will always stop
running!

* The conjecture (unproven claim) that th hailstone
sequence always terminates is called the Collatz
Conjecture.

* This problem has eluded a solution for a long time.
The influential mathematician Paul Erdos is reported
to have said “Mathematics may not be ready for such
problems.”



An Important Observation

» Unlike finite automata, which automatically halt
after all the input is read, TMs keep running
until they explicitly return true or return false.

* As a result, it’s possible for a TM to run forever
without accepting or rejecting.

» This leads to several important questions:

- How do we formally define what it means to build a
TM for a language?

- What implications does this have about problem-
solving?



Very Important Terminology

Let M be a Turing machine.
M accepts a string w if it returns true on w.
M rejects a string w if it returns false on w.

M loops infinitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

M does not accept w if it either rejects w or loops on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

does not reject ) Accept ‘x

Loop halts

does not accept - - “




Recognizers and Recognizability

« ATM M is called a recognizer for a language L
over X if the following statement is true:

Vw e 2*, (we L o M accepts w)

 If you are absolutely certain that w € L, then
running a recognizer for L. on w will (eventually)
confirm this.

- Eventually, M will accept w.

 If you don’t know whether w € L, running M on w
may never tell you anything.

- M might loop on w - but you can’t differentiate between
“it’ll never give an answer” and “just wait a bit more.”

* Does that feel like “solving a problem” to you?



Recognizers and Recognizability

 The hailstone TM M we saw earlier is a recognizer
for the language

L ={a"| n > 0 and the hailstone
sequence terminates for n }.

 If the sequence does terminate starting at n, then
M accepts a".

 If the sequence doesn’t terminate, then M loops
forever on a". and never gives an answer.

* If you somehow knew the hailstone sequence
terminated for n, this machine would (eventually)
confirm this. If you didn’t know, this machine
might not tell you anything.



bool squigglebah(string input) {
bool pizkwat(string input) { while (true) {
return false; // do nothing
} }
}

bool humblegwah(string input) {
if (input.size() % 2 != 0) return false;
bool moozle(string input) {

int oot = 1; for (int 1 = 0; 1 < input.size() / 2; i1++) {

while (input.size() != oot) { if (input[2 * 1] != input[2 * 1 + 1]) {
oot += oot; return false;

} }

return true; }

}

return true;

}

Ywe2* (welL < M accepts w)

Each of these pieces of code is a recognizer for some language.
What language does each recognizer recognize?



Recognizers and Recognizability

« Earlier this quarter you explored sums of
four squares. Now, let’s talk about sums
of three cubes.

* Are there integers x, y, and z where...
- x3+ v+ 22 =107
- x>+ Y +22=117
- x>+ P+ 22=127
- x4+ Y+ 22=137




Recognizers and Recognizability

* Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x>+ y° + 2° = 33.

* A heavily optimized computer search found this
answer:

x = 8,3866,128,975,287,528
y =-8,778,405,442,8062,239
z=-2,736,111,4638,807,040

* As of November 2021, no one knows whether
there are integers x, y, and z where

x>+ y + 28 =114.



Recognizers and Recognizability

* Consider the language
L={a"|dxeZ. dyeZ. 1z€eZ. 3+ y  +23=n}

 Here’s pseudocode for a recognizer to see whether such

a triple exists:

for max = 0, 1, 2, ..
for x from -max to +max:
for y from -max to +max:
for z from -max to +max:
if X3+ y> + z2 = n: return true

 If you somehow knew there was a triple x, y, and 2

where x3 + y3 + 2° = n, running this program will

(eventually) convince you of this.

« If you weren’t sure whether a triple exists, this
recognizer might not be useful to you.



Recognizers and Recognizability

* The class RE consists of all recognizable languages.
« Formally speaking:
RE = { L |Lisalanguage and there’s arecognizerforL }

* You can think of RE as “all problems with yes/no
answers where “yes” answers can be confirmed by a
computer.”

- Given a recognizable language L and a string w € L, running a
recognizer for L on w will eventually confirm w € L.

- The recognizer will never have a “false positive” of saying
that a string is in L. when it isn’t.

« This is a “weak” notion of solving a problem.
 Is there a “stronger” one?



Deciders and Decidability

 Some, but not all, TMs have the following
property: the TM halts on all inputs.

e If you are given a TM M that always halts, then
for the TM M, the statement “M does not
accept w” means “M rejects w.”

does not reject - | ACCEpPL

~ halts (always)
- /

does not accept -




Deciders and Decidability

« ATM M is called a decider for a language L over X
if the following statements are true:

Vw € 2*, M halts on w.
Vwe 3X*, (wWeL o M accepts w)

* In other words, M accepts all strings in L. and
rejects all strings not in L.

* In other words, M is a recognizer for L., and M halts
on all inputs.

» If you aren’t sure whether w € L, running M on w
will (eventually) give you an answer to that
question.



Deciders and Decidability

 The hailstone TM M we saw earlier is a recognizer
for the language

L ={a"| n> 0 and the hailstone
sequence terminates for n }.

 If the hailstone sequence terminates for n, then M
accepts a". If it doesn’t, then M does not accept a".

« We honestly don’t know if M is a decider for this
language.

- If the hailstone sequence always terminates, then M
always halts and is a decider for L.

- If the hailstone sequence doesn’t always terminate, then
M will loop on some inputs and isn’t a decider for L.



bool squigglebah(string input) {
bool pizkwat(string input) { while (true) {
return false; // do nothing
} }
}

bool humblegwah(string input) {
if (input.size() % 2 != 0) return false;
bool moozle(string input) {

int oot = 1; for (int 1 = 0; 1 < input.size() / 2; i1++) {

while (input.size() != oot) { if (input[2 * 1] != input[2 * 1 + 1]) {
oot += oot; return false;

} }

return true; }

}

return true;

}

VYw € 2* M halts on w
VweX* weL < M acceptsw)

Each piece of code is a recognizer for a language.
Which are deciders?



Deciders and Decidability

e While no one knows whether there are
integers x, y, and z where

x>+ Yy + 22 =114,

it is very easy to figure out whether
there are integers x, y, and z where

x¢ + y* + 22 = 114.
 Take a minute to discuss - why is this?



Deciders and Decidability

* Consider the language
L={{a"|dxeZ yeZ. dJz€eZ. x> +y>*+2°=n }.

 Here’s pseudocode for a decider to see whether
such a triple exists:

for x from 0 to n:
for vy from 0 to n:
for z from 0 to n:
if x*+ y?> + z2 = n: return true
return false

» After trying all possible options, this program will
either find a triple that works or report that none
exists.



Deciders and Decidability

 The class R consists of all decidable languages.
 Formally speaking:
R = { L | L is alanguage and there’s a decider for L }

* You can think of R as “all problems with yes/no
answers that can be fully solved by computers.”

- Given a decidable language, run a decider for L. and see what
happens.

- Think of this as “knowledge creation” - if you don’t know
whether a string is in L, running the decider will, given
enough time, tell you.

* The class R contains all the regular languages, all the
context-free languages, most of CS161, etc.

« This is a “strong” notion of solving a problem.



R and RE Languages

Every decider for L is also a recognizer for L.
This means that R C RE.
Hugely important theoretical question:

R = RE

That is, if you can just confirm “yes” answers to
a problem, can you necessarily solve that
problem?



Which Picture is Correct?

Regular
CFLs

All Languages



Which Picture is Correct?

/ A\

Regular R

N y.

All Languages



Unanswered Questions

 Why exactly is RE an interesting class of
problems?

« What does the R = RE question mean?
 Is R = RE?
 What lies beyond R and RE?

e We'll see the answers to each of these in
due time.



Next Time

« Emergent Properties

- Larger phenomena made of smaller parts.
 Universal Machines

- A single, “most powertul” computer.
 Self-Reference

- Programs that ask questions about
themselves.
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