
  

Turing Machines
Part Two



  

Outline for Today

● The Church-Turing Thesis
– Just how powerful are TMs?

● What Does it Mean to Solve a 
Problem?
– Rethinking what “solving” a problem 

means, and two possible answers to that 
question.



  

Recap from Last Time



  

Turing Machines

● A Turing machine is a program that controls a 
tape head as it moves around an infinite tape.

● There are six commands:
– Move direction
– Write symbol
– Goto label
– Return boolean
– If symbol command
– If Not symbol command

● Despite their limited vocabulary, TMs are 
surprisingly powerful.



  

A Sample Turing Machine

● Here’s a sample TM.
● It receives inputs 

over the alphabet 
Σ = {a, b}.

● What strings does 
this TM accept?

● Can you write a 
regex that matches 
precisely the strings 
this TM accepts?

Start:
    If Not 'a' Return False

Loop:
    Move Right
    If Not Blank Goto Loop
    Move Left
    Move Left
    If Not 'b' Return False
    Return True



  

What Can We Do With a TM?

● Last time, we saw TMs that
– check if a string has the form anbn,
– check if a string has the same number of a’s and b’s,
– sort a string of a’s and b’s,
– check if a string’s length is a Fibonacci number,
– convert the decimal number n into the string an, and
– check if a decimal number is a Fibonacci number.

● This hints at the idea that TMs might be more 
powerful than they look.



  

New Stuff!



  

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?



  

Real and “Ideal” Computers

● A real computer has memory limitations: you 
have a finite amount of RAM, a finite amount of 
disk space, etc.

● However, as computers get more and more 
powerful, the amount of memory available keeps 
increasing.

● An idealized computer is like a regular 
computer, but with unlimited RAM and disk 
space. It functions just like a regular computer, 
but never runs out of memory.



  

Theorem: Turing machines are equal in 
power to idealized computers. That is, 
any computation that can be done on a 

TM can be done on an idealized computer 
and vice-versa.



  

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.



  

Simulating a TM

● The individual commands in a TM are simple and 
perform only basic operations:

Move   Write   Goto   Return   If 
● The memory for a TM can be thought of as a string 

with some number keeping track of the current index.
● To simulate a TM, we need to

– see which line of the program we’re on,
– determine what command it is, and
– simulate that single command.

● Claim: This is reasonably straightforward to do on an 
idealized computer.
– My “core” logic for the TM simulator is under fifty lines of 

code, including comments.



  

Simulating a TM

● Because a computer can simulate each 
individual TM instruction, a computer 
can do anything a TM can do.

● Key Idea: Even the most complicated 
TM is made out of individual 
instructions, and if we can simulate 
those instructions, we can simulate an 
arbitrarily complicated TM.



  

Simulating a Computer

● Programming languages provide a set of simple 
constructs.
– Think things like variables, arrays, loops, functions, 

classes, etc.
● You, the programmer, then combine these basic 

constructs together to assemble larger 
programs.

● Key Idea: If a TM is powerful enough to 
simulate each of these individual pieces, it’s 
powerful enough to simulate anything a real 
computer can do.



  

What We've Seen

● We’ve seen TMs use loops to solve problems.
– Our { anbn | n ∈ ℕ } TM repeatedly pulls off the 

first and last character from the string.
– Our sorting TM repeatedly finds ba and replaces 

it with ab.
● In some sense, the existence of Goto and 

labels means that TMs have loops.
● Hopefully, it’s not too much of a stretch to 

think that TMs can do while loops, for loops, 
etc.



  

What We've Seen

● We’ve seen TMs that perform basic 
arithmetic.
– We can check if two numbers are equal.
– We can check if a number is a Fibonacci 

number.
● Hopefully, it’s not too much of a stretch 

to believe we could also do addition and 
subtraction, compute powers of numbers, 
do ceilings and floors, etc.



  

What We've Seen

● We’ve seen TMs that maintain variables.
– You can think of our TM for { anbn | n ∈ ℕ } as 

storing two variables – one that counts a number 
of a’s, and one that counts a number of b’s.

– Our TM for Fibonacci numbers kinda sorta ish 
tracks the last two Fibonacci numbers, plus the 
length of the input string.

● It’s a bit larger of a jump to make, but 
hopefully you’re comfortable with the idea 
that TMs, in principle, can maintain 
variables.



  

What We've Seen

● We’ve seen TMs with helper functions.
– We saw how to check for equal numbers of a’s 

and b’s by first sorting the string, then checking 
of the string has the form anbn.

– We can check if a decimal number is a 
Fibonacci number by converting it to unary, 
then running our unary Fibonacci checker.

● Hopefully you’re comfortable with the idea 
that a TM could have multiple “helper 
functions” that work together to solve some 
larger problem.



  

What Else Can TMs Do?

● Maintain strings and arrays.
– Store their elements separated with some 

special separator character.
● Support pointers.

– Maintain an array of what’s in memory, 
where each item is tagged with its “memory 
address.”

● Support function call and return.
– It’s hard, but you can do this if you can do 

helper functions and variables.



  

A CS107 Perspective

● Internally, computers execute by using basic 
operations like
– simple arithmetic,
– memory reads and writes,
– branches and jumps,
– register operations,
– etc.

● Each of these are simple enough that they 
could be simulated by a Turing machine.



  

A Leap of Faith

● Claim: A TM is powerful enough to simulate any 
computer program that gets an input, processes 
that input, then returns some result. 

 

● The resulting TM might be colossal, or really slow, 
or both, but it would still faithfully simulate the 
computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come talk to 
me after class.

Computational
Device

Yep

Nah

input



  

Can a TM Work With…

Sure! A picture is 
just a 2D array of 
colors, and a color 
can be represented 

as a series of 
numbers.

“cat pictures?”



  

Can a TM Work With…

If you think about 
it, a video is just a 
series of pictures!

“cat videos?”
“cat pictures?”



  

Can a TM Work With…

Sure! Music is encoded as a 
compressed waveform. That’s 

just a list of numbers.

“music?”

Sure! That’s just applying a 
bunch of matrices and 

nonlinear functions to some 
input.

“deep learning?”



  

Just how powerful are Turing machines?



  

Effective Computation

● An effective method of computation is a form 
of computation with the following properties:
– The computation consists of a set of steps.
– There are fixed rules governing how one step leads 

to the next.
– Any computation that yields an answer does so in 

finitely many steps.
– Any computation that yields an answer always yields 

the correct answer.
● This is not a formal definition. Rather, it's a set 

of properties we expect out of a computational 
system.



  

The Church-Turing Thesis claims that

every effective method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



  

Regular
Languages CFLs

All Languages

Problems 
solvable by 

Turing 
Machines



  

TMs and Computation

● Because Turing machines have the same 
computational powers as regular computers, we 
can (essentially) reason about Turing machines 
by reasoning about actual computer programs.

● Going forward, we're going to switch back and 
forth between TMs and computer programs 
based on whatever is most appropriate.

● In fact, our eventual proofs about the existence 
of impossible problems will involve a good 
amount of pseudocode. Stay tuned for details!



  

Time-Out for Announcements!



  

Problem Set 8

● Problem Set Seven was due at 2:30PM today.
● Problem Set Eight goes out today. It’s due next 

Friday at 2:30PM.
– Construct context-free grammars and explore their 

expressive power.
– Probe the interface between regular and nonregular 

languages.
– Tinker with TMs and what it’s like to build all 

computation from smaller pieces.
● You know the drill: come talk to us if you have 

any questions, and let us know what we can do to 
help out.



  

Your Questions



  

“I ended up in the bottom quintile on midterm 2, significantly 
worse than I did on midterm 1. Any tips for not taking this as a 
sign that I should so something other than CS? I know that this 
sounds like an emotional overreaction, but I also really bricked 

a technical interview that I spent a lot of time preparing for 
earlier this week. I'm constantly worried that I'm worse at this 
than everyone else, and there seems to be enough evidence to 

back that worry up. :(“

For starters, it sounds like you’ve a rough week, and I’m sorry to hear that. ☹
 

As much as is possible, distinguish between “this exam didn’t go well for me” and “I am 
objectively not good at this.” Everyone has the experience of an interview that didn’t go 
well and an exam that didn’t go well. It’s not a fun experience (can confirm). Do the 
things you need to do to dust off and get back to a good frame of mind, then look 
back and do the analysis to see what you need to learn and what you can do differently 
for next time. You’re always learning and picking up new skills – try to focus that growth 
in areas that have the biggest difference.
 

As for how other folks are doing: by definition half of the students in CS103 will end up 
in the bottom half of the course. Relative positioning is much less important than you 
might think. What matters in the long run is what you’ve learned and what you can do 
going forward, not whether other people can do it better than you.



  

Remember that…

… you are smart,
… you are creative,
… you are competent, and that
… you are hardworking.

The material in CS103 is challenging. It’s 
legitimately tough. We’re confident you 
can do this. Let us know how we can help. 



  

“Favorite movies?“
 

● “Black Orpheus:” Starts strong and never lets up.
● “The Darjeeling Limited:” Wonderful escapist family drama.
● “The Good, The Bad, and The Ugly:” It’s a classic for a reason.
● “Rules of the Game:” 1939 pre-war social commentary that’s still relevant.
● “12 Angry Men:” Proof that you can have incredible drama in one room.
● “Le Samourai:” Incredible character study .
● “Brazil:” Dystopian science fiction story that feels alarmingly recognizable.
● “Fantasia:” Sit back, relax, listen, and unwind.
● “Seven Samurai,” “Yojimbo,” “The Hidden Fortress,” “Ikiru:” There’s a reason 
Kurosawa is such a legend. These films influenced so many future ones.

● “City of God:” Funny, darkly serious, terrifying, and well-acted.
● “There Will Be Blood:” Daniel Day Lewis’s performance will stick with you for 
a long time after watching this one.

● “Lawrence of Arabia:” Sweeping epic in the best sense of the word.
● “Amelie:” Beautiful movie, beautiful soundtrack.
● “Unforgiven:” Deconstruction of the Western archetype.
● “Little Miss Sunshine:” One of the funniest movies I’ve ever seen.
● “My Neighbor Totoro:” The most wholesome movie I’ve ever seen.
● “Back to the Future:” Why is this movie so good?



  

Back to CS103!



  

Decidability and Recognizability



  

What problems can we solve with a computer?

What does it 
mean to “solve” 
a problem?



  

The Hailstone Sequence

● Consider the following procedure, 
starting with some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Question: Given a natural number 
n > 0, does this process terminate?
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· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.



  

The Hailstone Sequence

● Consider the following procedure, starting with 
some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Does the Hailstone Sequence terminate for…
– n = 5?  Yes, after 5 steps.
– n = 20? Yes, after 7 steps.
– n = 7?  Yes, after 16 steps.
– n = 27? Yes, after 111 steps.



  

The Hailstone Sequence

● Let Σ = {a} and consider the language

   L = { an | n > 0 and the hailstone
                   sequence terminates for n }.

● Could we build a TM for L?



  

The Hailstone Turing Machine

● We can build a TM that works as follows:
– If the input is ε, reject.
– While the string is not a:

● If the input has even length, halve the length of 
the string.

● If the input has odd length, triple the length of 
the string and append a a.

– Accept.



  

Does this Turing machine accept all 
nonempty strings?



  

The Collatz Conjecture

● It is unknown whether this process will terminate for 
all natural numbers.

● In other words, no one knows whether the TM 
described in the previous slides will always stop 
running!

● The conjecture (unproven claim) that th hailstone 
sequence always terminates is called the Collatz 
Conjecture.

● This problem has eluded a solution for a long time. 
The influential mathematician Paul Erdős is reported 
to have said “Mathematics may not be ready for such 
problems.”



  

An Important Observation

● Unlike finite automata, which automatically halt 
after all the input is read, TMs keep running 
until they explicitly return true or return false.

● As a result, it’s possible for a TM to run forever 
without accepting or rejecting.

● This leads to several important questions:
– How do we formally define what it means to build a 

TM for a language?
– What implications does this have about problem-

solving?



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M loops infinitely (or just loops) on a string w if when run on w 
it neither returns true nor returns false.

● M does not accept w if it either rejects w or loops on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

● A TM M is called a recognizer for a language L 
over Σ if the following statement is true:

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)
● If you are absolutely certain that w ∈ L, then 

running a recognizer for L on w will (eventually) 
confirm this.
– Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w 
may never tell you anything.
– M might loop on w – but you can’t differentiate between 

“it’ll never give an answer” and “just wait a bit more.”
● Does that feel like “solving a problem” to you?

Recognizers and Recognizability



  

● The hailstone TM M we saw earlier is a recognizer 
for the language

L = { an | n > 0 and the hailstone
                         sequence terminates for n }.

● If the sequence does terminate starting at n, then 
M accepts an.

● If the sequence doesn’t terminate, then M loops 
forever on an. and never gives an answer.

● If you somehow knew the hailstone sequence 
terminated for n, this machine would (eventually) 
confirm this. If you didn’t know, this machine 
might not tell you anything.

Recognizers and Recognizability



  
Each of these pieces of code is a recognizer for some language.

What language does each recognizer recognize?

bool pizkwat(string input) {
  return false;             
}                           

bool squigglebah(string input) {
  while (true) {                
    // do nothing               
  }                             
}                               

bool moozle(string input) {    
  int oot = 1;                 
  while (input.size() != oot) {
    oot += oot;                
  }                            
  return true;                 
}                              

bool humblegwah(string input) {
  if (input.size() % 2 != 0) return false;
 
  for (int i = 0; i < input.size() / 2; i++) {
    if (input[2 * i] != input[2 * i + 1]) {
      return false;
    }
  }

  return true;
}

∀w ∈ Σ*. (w ∈ L    ↔    M accepts w)



  

● Earlier this quarter you explored sums of 
four squares. Now, let’s talk about sums 
of three cubes.

● Are there integers x, y, and z where…
– x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
– x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
– x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
– x3 + y3 + z3 = 13? Nope!

Recognizers and Recognizability



  

● Surprising fact: until 2019, no one knew 
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this 

answer:

x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of November 2021, no one knows whether 
there are integers x, y, and z where

x3 + y3 + z3 = 114.

Recognizers and Recognizability



  

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }
● Here’s pseudocode for a recognizer to see whether such 

a triple exists:

for max = 0, 1, 2, …                  
  for x from -max to +max:            
    for y from -max to +max:          
      for z from -max to +max:        
        if x3 + y3 + z3 = n: return true

● If you somehow knew there was a triple x, y, and z 
where x3 + y3 + z3 = n, running this program will 
(eventually) convince you of this.

● If you weren’t sure whether a triple exists, this 
recognizer might not be useful to you.

Recognizers and Recognizability



  

Recognizers and Recognizability

● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no 

answers where “yes” answers can be confirmed by a 
computer.”
– Given a recognizable language L and a string w ∈ L, running a 

recognizer for L on w will eventually confirm w ∈ L.
– The recognizer will never have a “false positive” of saying 

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?



  

Deciders and Decidability

● Some, but not all, TMs have the following 
property: the TM halts on all inputs.

● If you are given a TM M that always halts, then 
for the TM M, the statement “M does not 
accept w” means “M rejects w.”

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Deciders and Decidability

● A TM M is called a decider for a language L over Σ 
if the following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L   ↔   M accepts w)
● In other words, M accepts all strings in L and 

rejects all strings not in L.
● In other words, M is a recognizer for L, and M halts 

on all inputs.
● If you aren’t sure whether w ∈ L, running M on w 

will (eventually) give you an answer to that 
question.



  

Deciders and Decidability

● The hailstone TM M we saw earlier is a recognizer 
for the language

L = { an | n > 0 and the hailstone
                         sequence terminates for n }.

● If the hailstone sequence terminates for n, then M 
accepts an. If it doesn’t, then M does not accept an.

● We honestly don’t know if M is a decider for this 
language.
– If the hailstone sequence always terminates, then M 

always halts and is a decider for L.
– If the hailstone sequence doesn’t always terminate, then 

M will loop on some inputs and isn’t a decider for L.



  
Each piece of code is a recognizer for a language.

Which are deciders?

bool pizkwat(string input) {
  return false;             
}                           

bool squigglebah(string input) {
  while (true) {                
    // do nothing               
  }                             
}                               

bool moozle(string input) {    
  int oot = 1;                 
  while (input.size() != oot) {
    oot += oot;                
  }                            
  return true;                 
}                              

bool humblegwah(string input) {
  if (input.size() % 2 != 0) return false;
 
  for (int i = 0; i < input.size() / 2; i++) {
    if (input[2 * i] != input[2 * i + 1]) {
      return false;
    }
  }

  return true;
}

∀w ∈ Σ*. M halts on w
 

∀w ∈ Σ*. (w ∈ L    ↔    M accepts w)



  

Deciders and Decidability

● While no one knows whether there are 
integers x, y, and z where

x3 + y3 + z3 = 114,

it is very easy to figure out whether 
there are integers x, y, and z where

x2 + y2 + z2 = 114.
● Take a minute to discuss – why is this?



  

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x2 + y2 + z2 = n }.
● Here’s pseudocode for a decider to see whether 

such a triple exists:

for x from 0 to n:                  
  for y from 0 to n:                
    for z from 0 to n:              
      if x2 + y2 + z2 = n: return true
return false                        

● After trying all possible options, this program will 
either find a triple that works or report that none 
exists.

Deciders and Decidability



  

Deciders and Decidability

● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no 

answers that can be fully solved by computers.”
– Given a decidable language, run a decider for L and see what 

happens.
– Think of this as “knowledge creation” – if you don’t know 

whether a string is in L, running the decider will, given 
enough time, tell you.

● The class R contains all the regular languages, all the 
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.



  

R and RE Languages

● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions

● Why exactly is RE an interesting class of 
problems?

● What does the R  ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in 

due time.



  

Next Time

● Emergent Properties
– Larger phenomena made of smaller parts.

● Universal Machines
– A single, “most powerful” computer.

● Self-Reference
– Programs that ask questions about 

themselves.
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