Turing Machines
Part Three



Outline for Today

- Why Languages and Strings?

 We’ve been using languages to model
problems. Why?

e Universal Machines

* A single computer that can compute
anything computable anywhere.

» Self-Referential Software

 Programs that compute on themselves.



Recap from Last Time



The Church-Turing Thesis claims that

every effective method of computation
is either equivalent to or weaker than
a Turing machine.

“This is not a theorem - it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



Regular
Languages

Problems
Solvable by
Any Feasible
Computing
Machine

All Languages




Problems
Regular solvable by
Languages Turing

Machines

All Languages




Very Important Terminology

Let M be a Turing machine.
M accepts a string w if it returns true on w.
M rejects a string w if it returns false on w.

M loops infinitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

M does not accept w if it either rejects w or loops on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

does not reject ) Accept ‘x

Loop halts

does not accept - - “




Recognizers and Recognizability

« ATM M is called a recognizer for a language L
over X if the following statement is true:

Vw e 2*, (we L o M accepts w)

 If you are absolutely certain that w € L, then
running a recognizer for L on w will (eventually)
confirm this.

« Eventually, M will accept w.

« If you don’t know whether w € L, running M on w
may never tell you anything.

« M might loop on w - but you can’t differentiate between
“it’ll never give an answer” and “just wait a bit more.”

« This is a “weak” notion of “solving a problem.”



Deciders and Decidability

« ATM M is called a decider for a language L over X if
the following statements are true:

Vw € 2*, M halts on w.
Vwe 2* WeL e M accepts w)

* In other words, M accepts all strings in L and rejects
all strings not in L.

* In other words, M is a recognizer for L, and M halts
on all inputs.

* If you aren’t sure whether w € L, running M on w will
(eventually) give you an answer to that question.

« This is a “strong” notion of solving a problem.



R and RE Languages

e The class R consists of all decidable
languages.

 The class RE consists of all recognizable
languages.

* By definition, we know R C RE.
* Key Question: Does R = RE?



New Stuff!



Strings, Languages, and Encodings



What problems can we solve with a computer?

/

What is a
‘oroblem?”



Decision Problems

A decision problem is a type of problem where the
goal is to provide a yes or no answer.

 Example: Bin Packing

You're given a list of patients who need to be seen and
how much time each one needs to be seen for. You're
given a list of doctors and how much free time they have.
Is there a way to schedule the patients so that they can
all be seen?

 Example: Dominating Set Problem

You're given a transportation grid and a number K. Is
there a way to place emergency supplies in at most k
cities so that every city either has emergency supplies or
is adjacent to a city that has emergency supplies?



A Model tor Solving Problems

& B

input Computational

- Device \

€ 4




A Model tor Solving Problems

(accept)

@« D
Iinput

- Turing Machine
< y

(reject)

bool someFunctionName(string input) {

/] .. do something ..



A Model tor Solving Problems

(accept)

« D
Iinput

- Turing Machine
< v

(reject)

bool containsCat(Ricture P) {

/] .. do somethlngxi\\“ How does this
) match our model?




Humbling Thought:
Everything on your computer is a
string over {0, 1}.



Strings and Objects

 Think about how
my computer
encodes the image
on the right.

* Internally, it's just
a series of zeros
and ones sitting on
my hard drive.




Strings and Objects

« A different sequence
of 0s and 1s gives rise
to the image on the
right.

 Every image can be
encoded as a
sequence of 0s and 1s,
though not all
sequences of 0s and 1s
correspond to images.




Object Encodings

» If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation (Obj) to refer to some
way of encoding that object as a string.

 Think of (Obj) like a file on disk - it encodes some high-
level object as a series of characters.

= 110111001011..110




Object Encodings

» If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation (Obj) to refer to some
way of encoding that object as a string.

 Think of (Obj) like a file on disk - it encodes some high-
level object as a series of characters.

) = 001101010001...001




Object Encodings

For the purposes of what we’re going to be doing,
we aren’t going to worry about exactly how objects
are encoded.

For example, we can say (137) to mean “some
encoding of 137” without worrying about how it’s
encoded.

* Analogy: do you need to know how numbers are
represented in Python to be a Python programmer?
That’s more of a CS107 question.

We’ll assume, whenever we’'re dealing with
encodings, that some Smart, Attractive, Witty
person has figured out an encoding system for us
and that we’re using that encoding system.



Object Encodings

* Great intuition: If you can store an object as a
file on disk, then you can encode it as a string.

 Here are a bunch of different types of objects.
Which of these objects can always be encoded as a
string?
« A DFA over the alphabet {a, b}.

A regular expression.

A subset of {a, b}*.

A function ffrom { Kk € N | k < n } to itself, for some
n € N.

A graph whose nodes are the set { k € N | k < n }, for
some n € N.



A Model tor Solving Problems

(accept)

- D
input

- Turing Machine
(possibly

encoded) /

(reject)

bool containsCat(Eicture P) {

/] .. do somethingk Infernally, this is

a sequence of
] 0s and 1s,




A Model tor Solving Problems

- N
input . .
- Turing Machine
(possibly
encoded) //

(accept)

(reject)

bool matchesRegex(EFring W, RegexE) {

// .. do something .. ﬁ}{\‘_. How doss his
} match our model?




Encoding Groups of Objects

* Given a group of objects Obji, Objz, ..., Objn,
we can create a single string encoding all
these objects.

 Intuition 1: Think of it like a .zip file, but
without the compression.

 Intuition 2: Think of it like a tuple or struct.

 We'll denote the encoding of all of these
objects as a single string by (Obj, ..., Objn).



A Model tor Solving Problems

/
Iinput

>

(possibly

Turing Machine

-

/

multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(gEring W, Regex}R) {

/] .. do something .. L

}

These torm one
large bitstring.,




What problems can we solve with a computer?



Time-Out for Announcements!



75% Percentile: 62 / 63 (98%)
50" Percentile: 60 / 63 (95%)

Problem Set 6 Graded
25t Percentile: 56 / 63 (89%)

0-45 46 - 48 49 - 51 52 - 54 55 - 57 58 - 60 61 - 63




Problem Set 8

« PS7 solutions are now available on the
course website.

PS8 comes due this Friday at 2:30PM.

 Have questions? Come talk to us in office
hours, or post online on EdStem!



Your Questions



“Is it possible to make a website from
scratch for free?”

Yest Stantord automafically gives you web space at the URL

https://web.stanford.edu/~yourSUNetID/

So, for example, Nick Troccoli's web space is

https://web.stanford.edu/~troccoli/

For more info, look here:

https://uit.stanford.edu/guide/website



https://web.stanford.edu/~troccoli/
https://uit.stanford.edu/guide/website

“What are your thoughts about the re-
releases of Taylor Swift's albums? Do you
have a favorite song?”

Huh, 1 didn't know they'd been
reveleased, I1s been a while since 1 last
checked in on what she’s been up to.

My tavorife is probably *Shake it off,
which occupies a prime spot on my
jogging playlist, Don't judge.




Back to CS103!



Emergent Properties



Emergent Properties

« An emergent property of a system is a
property that arises out of smaller pieces that
doesn't seem to exist in any of the individual
pleces.

 Examples:

« Individual neurons work by firing in response to
particular combinations of inputs. Somehow, this
leads to consciousness, love, and ennui.

* Individual atoms obey the laws of quantum
mechanics and just interact with other atoms.
Somehow, it's possible to combine them together to
make iPhones and pumpkin pie.



Emergent Properties of Computation

« All computing systems equal to Turing machines
exhibit several surprising emergent properties.

 If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent” to
computation. Computation can’t exist without
them.

« These emergent properties are what ultimately
make computation so interesting and so powertul.

 As we'll see, though, they're also computation's
Achilles heel - they're how we find concrete
examples of impossible problems.



Two Emergent Properties

 There are two key emergent properties of
computation that we will discuss:

 Universality: There is a single computing device
capable of performing any computation.

* Self-Reference: Computing devices can ask
questions about their own behavior.

* As you'll see, the combination of these
properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.



Universal Machines



An Observation

« Think about how you interact with your physical
computer.

* You have a single, physical computer.
 That computer then runs multiple programs.

* Contrast that with how we’ve worked with TMs.

« We have a TM for { a’b” | n € N }. That TM will always
perform that calculation and never do anything else.

« We have a TM for the hailstone sequence. That TM can’t
compose poetry, write music, etc.

* How do we reconcile this difference?



Can we make a “reprogrammable
Turing machine?”



A TM Simulator

* It is possible to program a TM simulator on an unbounded-
memory computer.

* You've seen this in class, and you’ll use one on PS8.
« We could imagine it as a method
bool simulateTM(TM M, string w)
with the following behavior:

o If M accepts w, then simulateTM(M, w) returns true.
« If M rejects w, then simulateTM(M, w) returns false.
o If M loops on w, then simulateTM(M, w) loops infinitely.

Auk: h /// \\\

Move Left
M Write 'k'

Goto Moa
- > >

w | ...input... y \\\ simulateTM ///




A TM Simulator

It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

e This means that there must be some TM
that has the behavior of this simulateTM
method.

« What would that look like?
Auk : ) /?;rn: N\

Move Left If Blank Goto Heron
M Write 'k’ Write 'q'

Goto Moa : | Move Right

w | ...input... Universal TM

/ - /




The Universal Turing Machine

« Theorem (Turing, 1936): There is a Turing machine Uy called the
universal Turing machine that, when run on an input of the form
(M, w), where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

« The observable behavior of Uy is the following:

« If M accepts w, then Uy accepts (M, w). UTM does to (M, w)
e If M rejects w, then Uy, rejects (M, w).

what

e If M loops on w, then Uy loops on (M, w).
™ M does to w.

Auk: ) /?;rn: \\\

Move Left If Blank Goto Heron
M Write 'k’ Write 'q’

Goto Moa : | Move Right

w | ...input... Universal TM/

/ -




Urm as a Recognizer

- U,, when run on a string (M, w), where M is a
TM and w is a string, will

accept (M, w) if M accepts w,
reject (M, w) if M rejects w, and
loop on (M, w) if M loops on w.

« Although we didn’t design Um as a recognizer, it
does recognize some language.

« Which language is that?



Urm as a Recognizer

- U,, when run on a string (M, w), where M is a
TM and w is a string, will

accept (M, w) if M accepts w,
reject (M, w) if M rejects w, and
loop on (M, w) if M loops on w.

* Let’s let Arm be the language recognized by the
universal TM Uru. This means that

VM.Vw € 2*, (M accepts w & (M, w) € Arv)
« So we have
Arm={ (M, w) | MisaTM and M accepts w }



The Language A,

Amm={ (M, w) | Mis aTM and M accepts w }
* Here’s a complicated expression. Can you
simplify it?
(Upy (M, w)) € A,

« Given the definition of Arv and Uy, the following
statements are all equivalent to one another.

« M accepts w.
 Urm accepts (M, w).
y (Ml W) S ATM-



Regular
Languages

All Languages




Uh... so what?



Reason 1: It has practical consequences.



Why Does This Matter?

» The existence of a universal Turing machine has both
theoretical and practical significance.

« For a practical example, let's review this diagram from
before.

» Previously we replaced the computer with a TM. (This
gave us the universal TM.)

« What happens if we replace the TM with a computer
program?

for (int 1 = 2; A / \
1< n; 1++) {
code if (n% 1 ==0)
.

w | ...input... simulateProgram
/ k /




Why Does This Matter?

« We now have a computer program that runs other computer
programs!

 An interpreter is a program that simulates other programs. Python
programs are usually executed by interpreters. Your web browser
interprets JavaScript code when it visits websites.

« A virtual machine is a program that simulates an entire operating
system. Virtual machines are used in computer security, cloud
computing, and even by individual end users.

 It’s not a coincidence that this is possible - Turing’s 1936 paper

says that any general-purpose computing system must be able to
do this!
\

\
for (int 1 = 2; /

1 < n; i++) {
code if (n % 1 ==0)

} >

w | ...input... simulateProgram
/ \ /




Why Does This Matter?

 The key idea behind the universal TM is that

idea that TMs can be fed as inputs into other
TMs.

« Similarly, an interpreter is a program that takes
other programs as inputs.

« Similarly, an emulator is a program that takes entire
computers as inputs.

» This hits at the core idea that computing
devices can perform computations on other
computing devices.



Reason 2: It’s philosophically interesting.



Can Computers Think?

 On May 15, 1951, Alan Turing delivered
a radio lecture on the BBC on the
topic of whether computers can think.

 He had the following to say about
whether a computer can be thought of as
an electric brain...


http://www.turingarchive.org/browse.php/B/5

“In fact I think [computers] could be used in such a manner that they could be
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling,
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers,
which I will call their universality. A digital computer is a universal machine
in the sense that it can be made to replace any machine of a certain very wide
class. It will not replace a bulldozer or a steam-engine or a telescope, but it
will replace any rival design of calculating machine, that is to say any machine
into which one can feed data and which will later print out results. In order to
arrange for our computer to imitate a given machine it is only necessary to
programme the the computer to calculate what the machine in question would
do under given circumstances, and in particular what answers it would print
out. The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to programme
our digital computer to imitate it and it will also be a brain.”



Self-Referential Software



Quines

* A Quine is a program that, when run,
prints its own source code.

* Quines aren't allowed to just read the file
containing their source code and print it
out; that's cheating (and technically
incorrect if someone changes that file!)

 How would you write such a program?



Writing a Quine



Self-Referential Programs

« The fact that we can write Quines is not a
coincidence.

Theorem: It is possible to construct
TMs that perform arbitrary computations
on their own source code.

* In other words, any computing system
that’s equal to a Turing machine possesses
some mechanism for self-reference!

 Want to see how deep the rabbit hole goes?
Take CS154!



Self-Referential Programs

* Claim: Going forward, assume that any function has
the ability to get access to its own source code.

* This means we can write programs like the ones
shown here:

bool narcissist(string input) {
string me = /* source code of narcissist */;

return input == me;

}

bool acceptLongerStrings(string input) {
string me = /* source code of acceptlLongerStrings */;

return input.length() > me.length();




Next Time

* Self-Defeating Objects
* Objects “too powerful” to exist.

e Undecidable Problems

* Problems truly beyond the limits of
algorithmic problem-solving!

 Consequences of Undecidability

 Why does any of this matter outside of
Theoryland?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

