

Unsolvable Problems
Part One

Outline for Today

● Self-Reference Revisited
● Programs that compute on themselves.

● Self-Defeating Objects
● Objects “too powerful” to exist.

● The Fortune Teller
● Can you escape the future?

● Why Do Programs Loop?
● … and can we eliminate loops?

● Undecidable Problems
● Something beyond the reach of algorithms.

Recap from Last Time

R and RE

● A language L is recognizable if there is a TM M
with the following property:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, them M does not accept w.

– It might reject w, or it might loop on w.
● This is a “weak” notion of solving a problem.

● The class RE consists of all the recognizable
languages.

R and RE

● A language L is decidable if there is a TM M with
the following properties:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

M halts on all inputs.

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● This is a “strong” notion of solving a problem.

● The class R consists of all the decidable languages.

The Universal TM

● The universal Turing machine, denoted UTM, is a
TM with the following behavior: when run on a
string ⟨M, w⟩, where M is a TM and w is a string,
UTM will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● ATM is the language recognized by the universal
TM. This is the language

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

Self-Referential Programs

● Computing devices can compute on their
own source code:

Theorem: It is possible to construct
TMs that perform arbitrary computations

on their own source code.
● This allows us to write programs that

work on their own source code.

 What do each of these pieces of code do?

void cormorant() {
 string me = /* source code of
 * cormorant
 */;
 cout << me << endl;
}

bool curlew(string input) {
 string me = /* source code of
 * curlew
 */;
 return input == me;
}

int avocet() {
 string me = /* source code of
 * avocet
 */;
 int result = 0;
 for (char ch: me) {
 if (ch == 'a') result++;
 }
 return result;
}

New Stuff!

Part One: Self-Defeating Objects

A self-defeating object is an object whose
essential properties ensure it doesn’t exist.

Question: Why is there no largest integer?

Answer: Because if n is the largest integer,
what happens when we look at n+1?

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■-ish

Self-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■-ish

Self-Defeating Objects

We’re using n to
construct something that
undermines n, hence the

term “self-defeating.”

An Important Detail

Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that x > x – 1.

So there’s no contradiction. ■-ish

Careful – we’re
assuming what we’re
trying to prove!

How do we know there’s
no contradiction? We
just checked one case.

Self-Defeating Objects

● If you can show

x exists → ⊥

then you know that x doesn’t exist. (This is
a proof by contradiction.)

● If you can show

x exists → ⊤

you cannot conclude that x exists. (This is
not a valid proof technique.)

Part Two: The Fortune Teller

The Fortune Teller

● A fortune teller
appears who claims
they can see into
anyone’s future.

● For a nominal fee,
the fortune teller
will tell you
anything you want
to know about the
future.

The Fortune Teller

● One day, a trickster arrives. The
trickster thinks the fortune
teller is lying and can’t really
see the future.

● The trickster says the following:

“I have a yes/no question
about the future. But before
I ask my question, let’s talk

payment.

If you answer yes, then I’ll
pay you $137.

If you answer no, then I’ll
pay you $42.

● The fortune teller thinks for a
moment, then agrees.

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

The Fortune Teller

● The trickster then
asks this question:

“Am I going to
pay you $42?”

● The fortune teller
is trapped!

● Talk to your
neighbor – why? Trickster pays $137 if the

fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

The Fortune Teller

● The payment scheme the fortune teller agreed to means

Fortune Teller Says Yes ↔ Trickster Pays $137.
● The trickster’s question to the fortune teller means

Fortune Teller Says Yes ↔ Trickster Pays $42.
● Putting this together, we get

Trickster Pays $42 ↔ Trickster Pays $137.
● This is impossible!

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

The Fortune Teller

● The fortune teller is a self-defeating object.
● The trickster’s strategy is to couple the fortune teller’s

behavior to what the future holds.
● The trickster’s behavior is chosen in advance to make the

fortune teller’s answer wrong.
● Therefore, the fortune teller can’t answer all questions

about all people in the future.

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

Part Three: Why Do Programs Loop?

Thoughts on Loops

● In practice, the programs we write
sometimes go into infinite loops.

● In Theoryland, Turing machines are allowed
to loop. This happens if they don’t accept and
don’t reject.

● Question: Why are infinite loops possible?
● Or rather: are infinite loops an inherent part

of computation, or are they some weird sort
of “accident” in how we program computers?

Thoughts on Loops

● Theorem: The language ATM is recognizable,
but undecidable.
● There’s a recognizer for ATM (specifically, the

universal Turing machine UTM).
● It is impossible to build a decider for this

language.
● Stated differently, there’s a program we can

write (a universal TM) that has to loop
infinitely on some inputs.

● Goal: Prove this theorem, and explore its
theoretical and philosophical implications.

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● The universal TM UTM has the following behavior
when given as input a TM M and a string w:

● If M accepts w, then UTM accepts ⟨M, w⟩.
● If M rejects w, then UTM rejects ⟨M, w⟩.
● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM is a recognizer for ATM, but because of that last
case it’s not a decider for ATM.

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Given a TM M and a string w, a decider D for ATM
would need to have this behavior:

● If M accepts w, then D accepts ⟨M, w⟩.
● If M rejects w, then D rejects ⟨M, w⟩.
● If M loops on w, then D rejects ⟨M, w⟩.

● This is basically the same set of requirements as
UTM, except for what happens if M loops on w.

● Our goal is to prove that there is no way to build a
program that meets these requirements.

?

?

?

ATM Revisited

● We can envision a decider for ATM as a function

bool willAccept(string fn, string input)

that takes as input the source code of a function (fn)
and a string representing an input to that function
(input).

● It then does the following:
● If fn(input) returns true, willAccept(fn, input) returns true.
● If fn(input) returns false, willAccept(fn, input) returns false.
● If fn(input) loops, then willAccept(fn, input) returns false.

● We’re going to show it’s impossible to write a function
that actually does this. But for now, let’s just explore
what such a decider would do.

For each of these instances, what does
willAccept(function, input) return?

function = "bool f(string input) {
 if (input == "") return false;
 return input[0] == 'a';
}";

input = "abbababba";

willAccept(function, input) = ?

function = "bool g(string input) {
 while (true) {
 input += input;
 }
}";

input = "yay! ";

willAccept(function, input) = ?

function = "bool j(string input) {
 int n = input.length();
 while (n > 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return true;
}";

input = /* 10137 a's */;

willAccept(function, input) = ?

function = "bool h(string input) {
 for (char c: input) {
 if (c != input[0]) return true;
 }
 return false;
}";

input = "aaaaaa";

willAccept(function, input) = ?

● Earlier this quarter you explored sums of
four squares. Now, let’s talk about sums
of three cubes.

● Are there integers x, y, and z where…
● x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
● x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
● x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
● x3 + y3 + z3 = 13? Nope!

Deciding ATM

● Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this

answer:

x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of November 2021, no one knows whether
there are integers x, y, and z where

x3 + y3 + z3 = 114.

Deciding ATM

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }
● Here’s code for a recognizer to see whether such a triple exists:

bool hasTriple(int n) {
 for (int max = 0; ; max++)
 for (int x = -max; x <= max; x++)
 for (int y = -max; y <= max; y++)
 for (int z = -max; z <= max; z++)
 if (x*x*x + y*y*y + z*z*z == n)
 return true;
}

● Imagine calling willAccept(/* hasTriple code */, 114).
● If such a triple exists, willAccept returns true.
● If no such triple exists, willAccept returns false.

● Key Intuition: However willAccept is implemented, it has to be
clever enough to resolve open problems in mathematics!

Deciding ATM

Why is ATM Hard?

● Intuition: A decider for ATM would be able to…
● … determine whether the hailstone sequence terminates

for any input. (Write a recognizer that runs the hailstone
sequence, then feed it into the decider for ATM.)

● … see if any number is the sum of three cubes. (Write a
recognizer that tries all infinitely many triples of
integers, then feed it into the decider for ATM.)

● … and much, much more.
● In other words, this seemingly simple problem of

“is this program going to terminate?” accidentally
scoops up a bunch of other seemingly harder
problems.

Time-Out for Announcements!

Info session tomorrow
(Thursday) at 2:30PM.
RSVP using this link.

https://stanford.zoom.us/meeting/register/tJwtfu2sqzsrGdOhxP9B4UJsBeBG8IChWq-N

On Rigor and Formalism in Math

● Terry Tao, considered by many to be the
greatest living mathematician, has an
essay about learning mathematics.

● It explains why formal proofs and
rigorous arguments are an important
part of learning math – and why it can be
a bit tricky at times.

● You can read it online here.

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

Your Questions

“What should my roommate
and I name our plants?”

I have two
suggestions!

Back to CS103!

Part Four: Putting It All Together

To Recap

● We’re assuming that, somehow, someone wrote a
function

bool willAccept(string function, string input);

that takes the code of a function and an input to
that function, then
● returns true if function(input) returns true, and
● returns false if function(input) doesn’t return true.

● Goal: Show that this decider is “self-defeating;”
its power is so great that it undermines itself.

● Idea: Convert the fortune teller story into a
program.

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

Am I going
to pay you

$42?

bool willAccept(string function, string input) {
 // Returns true if function(input) returns
 // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

trickster willAccept

If willAccept says trickster will
return true, then trickster

returns false.

If willAccept says trickster will
not return true, then trickster

returns true.

bool willAccept(string function, string input) {
 // Returns true if function(input) returns
 // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

A self-defeating
object.

Using that object
against itself.

bool willAccept(string function, string input) {
 // Returns true if function(input) returns
 // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

“The largest
integer n.”

“The integer
n + 1.”

 Theorem: There is no largest integer.

 Proof sketch: Suppose for the sake of contradiction
 that there is a largest integer. Call that integer n.

 Consider the integer n+1.

 Notice that n < n+1.

 But then n isn’t the largest integer.

 Contradiction! ■-ish

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) doesn’t return true. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
ATM, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■

Regular
Languages CFLs

All Languages

R RE

ATM

What Does This Mean?

● In one fell swoop, we've proven that
● ATM is undecidable; there is no general

algorithm that can determine whether a TM
will accept a string.

● R ≠ RE, because ATM ∉ R but ATM ∈ RE.

● What do these three statements really
mean? As in, why should you care?

ATM ∉ R

● What exactly does it mean for ATM to be
undecidable?

Intuition: The only general way to find
out what a program will do is to run it.

● As you'll see, this means that it's provably
impossible for computers to be able to
answer most questions about what a
program will do.

ATM ∉ R

● At a more fundamental level, the existence of
undecidable problems tells us the following:

There is a difference between what is true
and what we can discover is true.

● Given a TM M and a string w, one of these two
statements is true:

M accepts w M does not accept w

But since ATM is undecidable, there is no
algorithm that can always determine which of
these statements is true!

R ≠ RE

● Because R ≠ RE, there is a difference
between decidability and recognizability:

In some sense, it is fundamentally
harder to solve a problem than it is to

check an answer.
● There are problems where, when the

answer is “yes,” you can confirm it (run a
recognizer), but where if you don’t have
the answer, you can’t come up with it in a
mechanical way (build a decider).

Next Time

● Why All This Matters
● Important, practical, undecidable problems.

● Intuiting RE
● What exactly is the class RE all about?

● Verifiers
● A totally different perspective on problem solving.

● Beyond RE
● Finding an impossible problem using very familiar

techniques.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

