Unsolvable Problems
Part One



Outline for Today

 Self-Reference Revisited
 Programs that compute on themselves.
* Self-Defeating Objects
* Objects “too powertful” to exist.
 The Fortune Teller
* Can you escape the future?
- Why Do Programs Loop?
* ... and can we eliminate loops?

e Undecidable Problems

 Something beyond the reach of algorithms.



Recap from Last Time



R and RE

A language L is recognizable if there isa TM M
with the following property:

Vw € 2*, (M accepts w o w € L).

That is, for any string w:

« If we L, then M accepts w.
« If w ¢ L, them M does not accept w.

- It might reject w, or it might loop on w.
This is a “weak” notion of solving a problem.

The class RE consists of all the recognizable
languages.



R and RE

A language L is decidable if there is a TM M with
the following properties:

Vw € 2*, (M accepts w o w € L).
M halts on all inputs.
That is, for any string w:

« If we L, then M accepts w.
« If w & L, then M rejects w.
This is a “strong” notion of solving a problem.

The class R consists of all the decidable languages.



The Universal TM

 The universal Turing machine, denoted Uy, is a
TM with the following behavior: when run on a

string (M, w), where M is a TM and w is a string,

accept (M, w) if M accepts w,
reject (M, w) it M rejects w, and
loop on (M, w) if M loops on w.

* Arm is the language recognized by the universal
TM. This is the language

Arm ={ (M, w) | Mis a TM and M accepts w }



Self-Referential Programs

 Computing devices can compute on their
own source code:

Theorem: It is possible to construct
TMs that perform arbitrary computations
on their own source code.

* This allows us to write programs that
work on their own source code.



void cormorant() { bool curlew(string input) {

string me = /* source code of string me = /* source code of
* cormorant * curlew
*/; . */;

cout << me << endl; return input == me;

int avocet() {
string me = /* source code of
* avocet
*/;
int result = 0;
for (char ch: me) {
if (ch == 'a') result++;

}

return result;

What do each of these pieces of code do?



New Stuff!



Part One: Selt-Defeating Objects



A self-defeating object is an object whose
essential properties ensure it doesn’t exist.



Question: Why is there no largest integer?

Answer: Because if n is the largest integer,
what happens when we look at n+17



Selt-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.
Contradiction! H-ish



Selt-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1. , .
We're using n to

But then n isn’t the lard construct something that
undermines n, hence the

term “self-defeating.”

Contradiction! B-ish




An Important Detail



Caretul — we're

assuming what we're
Trying To prover:

Claim: There is a largest integer.
Proof: Assume x is the largest integer.

Notice that x > x - 1.
So there’s no contradiction. W-ish

How do we know there’s
no contradiction? Wwe
just checked one case.




Selt-Defeating Objects

* If you can show
X exists - L

then you know that x doesn’t exist. (This is
a proof by contradiction.)

 If you can show
X exists - T

you cannot conclude that x exists. (This is
not a valid proof technique.)



Part Two: The Fortune Teller



The Fortune Teller

* A fortune teller
appears who claims
they can see into
anyone’s future.

 For a nominal fee,
the fortune teller
will tell you
anything you want
to know about the
future.
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The Fortune Teller

* One day, a trickster arrives. The
trickster thinks the fortune
teller is lying and can’t really
see the future.

» The trickster says the following:

“I have a yes/no question
about the future. But before
I ask my question, let’s talk

payment.

If you answer yes, then I'll
pay you $137.

If you answer no, then I’ll
pay you $42.

« The fortune teller thinks for a
moment, then agrees.
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Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”




The Fortune Teller

 The trickster then %
asks this question: “

“Am I going to ‘\

pay you $42?2” \
* The fortune teller
is trapped! / \ / \

« Talk to your N 6137 if th
. rickster pays if the
IlelgthI‘ - Why? fortune teller answers “yes.”

0 0

Trickster pays $42 if the
fortune teller answers “no.”




The Fortune Teller

 The payment scheme the fortune teller agreed to means
Fortune Teller Says Yes << Trickster Pays $137.
» The trickster’s question to the fortune teller means
Fortune Teller Says Yes < Trickster Pays $42.
e Putting this together, we get
Irickster Pays $42 < Trickster Pays $137.
« This is impossible!
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*

@ g Trickster pays $137 if the

fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”




The Fortune Teller

 The fortune teller is a self-defeating object.

« The trickster’s strategy is to couple the fortune teller’s
behavior to what the future holds.

 The trickster’s behavior is chosen in advance to make the
fortune teller’s answer wrong.

 Therefore, the fortune teller can’t answer all questions
about all people in the future.

7
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*
@ g Trickster pays $137 if the

fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”




Part Three: Why Do Programs Loop?



Thoughts on Loops

* In practice, the programs we write
sometimes go into infinite loops.

* In Theoryland, Turing machines are allowed
to loop. This happens if they don’t accept and
don’t reject.

* Question: Why are infinite loops possible?

* Or rather: are infinite loops an inherent part
of computation, or are they some weird sort
of “accident” in how we program computers?



Thoughts on Loops

« Theorem: The language Arm iS recognizable,
but undecidable.

 There’s a recognizer for Arv (specifically, the
universal Turing machine Ury).

It is impossible to build a decider for this
language.

» Stated differently, there’s a program we can
write (a universal TM) that has to loop
infinitely on some inputs.

* Goal: Prove this theorem, and explore its
theoretical and philosophical implications.



Arv Revisited

As a refresher, the language A is
Arm ={ (M, w) | Mis a TM and M accepts w }.

The universal TM Uru has the following behavior
when given as input a TM M and a string w:

« If M accepts w, then Um accepts (M, w).
 If M rejects w, then Um rejects (M, w).
 If M loops on w, then Um loops on (M, w).

UM is a recognizer for Arv, but because of that last
case it’s not a decider for Arm.



Arv Revisited

As a refresher, the language A is
Arm ={ (M, w) | Mis a TM and M accepts w }.

Given a TM M and a string w, a decider D for Amm
would need to have this behavior:

« If M acceptsw, then D ? (M, w).
« If M rejectsw, then D ? (M, w).
« If Mloopsonw, then D ? (M, w).

This is basically the same set of requirements as
Umv, except for what happens if M loops on w.

Our goal is to prove that there is no way to build a
program that meets these requirements.



Arv Revisited

» We can envision a decider for Aty as a function
bool willAccept(string fn, string input)

that takes as input the source code of a function (fn)
and a string representing an input to that function
(input).

It then does the following:
o If fn(input) returns true, willAccept(fn, input) returns true.
o If fn(input) returns false, willAccept(fn, input) returns false.
o If fn(input) loops, then willAccept(fn, input) returns false.

« We’re going to show it’s impossible to write a function
that actually does this. But for now, let’s just explore
what such a decider would do.



function = "bool f(string input) {
if (input == "") return false;
return input[0] == 'a';

",
3

input = "abbababba";

willAccept(function, input) = ?

function = "bool g(string input) {
while (true) {
input += input;

}

",
3

input = "yay! ";

willAccept(function, input) = ?

function = "bool h(string input) {
for (char c: input) {
if (c !'= input[0]) return true;

}

return false;

",
3

input = "aaaaaa";

willAccept(function, input) = ?

function = "bool j(string input) {
int n = input.length();
while (n > 1) {
if (n%2==0)n/=2;
else n = 3*n + 1;
}

return true;

",
3

input = /* 10% a's */;

willAccept(function, input) = ?

For each of these instances, what does
willAccept(function, input) return?



Deciding Arm

« Earlier this quarter you explored sums of
four squares. Now, let’s talk about sums
of three cubes.

* Are there integers x, y, and z where...
e X3+ Y3+ 28 =107
e X3+ W+ 22=117
e X3+ Y+ 22=127
* X3+ Yy + 23 =137




Deciding Amwm

* Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x>+ y° + 2° = 33.

* A heavily optimized computer search found this
answer:

x = 8,3866,128,975,287,528
y =-8,778,405,442,8062,239
z=-2,736,111,4638,807,040

* As of November 2021, no one knows whether
there are integers x, y, and z where

x>+ y+ 22 =114.



Deciding Arm

« Consider the language
L={a"|dxeZ yeZ. 3z€Z. 3+ y  +22=n}
 Here’s code for a recognizer to see whether such a triple exists:

bool hasTriple(int n) {
for (int max = 0; ; max++)
for (int x = -max; X <= max; X++)
for (int y = -max; y <= max; y++)
for (int z = -max; z <= max; z++)
1f (X*X*X + y*y*y + z*z*z == n)
return true;

}
« Imagine calling willAccept(/* hasTriple code */, 114).

 If such a triple exists, willAccept returns true.
 If no such triple exists, willAccept returns false.

 Key Intuition: However willAccept is implemented, it has to be
clever enough to resolve open problems in mathematics!



Why is Arm Hard?

e Intuition: A decider for A would be able to...

e ... determine whether the hailstone sequence terminates
for any input. (Write a recognizer that runs the hailstone
sequence, then feed it into the decider for Arm.)

« ... see if any number is the sum of three cubes. (Write a
recognizer that tries all infinitely many triples of
integers, then feed it into the decider for Arwm.)

e ... and much, much more.

* In other words, this seemingly simple problem of
“is this program going to terminate?” accidentally
scoops up a bunch of other seemingly harder
problems.



Time-Out for Announcements!
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; Stanford Engineerin
©) gineering

#3%~ Research Introductions

Are you curious about STEM research? Do you come from or identify
with an underrepresented background or community?
Are you a college underclassman?

If so, SERI (Stanford Engineering Research Introductions) can introduce
you to graduate research, including what to expect and how to best
prepare yourself to enter the graduate research program of your choice

? :QQ . .

WHAT WHERE WHEN HOW

Presentations, In person at Late January or Apply online by
panels, lab tours, Stanford University, Early February 2022 December 17", 2021
and more during a COVID19- tinyurl.com/
two-day program restrictions SERIApplication
permitting

Info session tomorrow
(Thursday) at 2:30PM.
RSVP using this link.

Questions?
https://seri.sites.stanford.edu/

seri-program@lists.stanford.edu Stanford | ENGINEERING

App. QR Code


https://stanford.zoom.us/meeting/register/tJwtfu2sqzsrGdOhxP9B4UJsBeBG8IChWq-N

On Rigor and Formalism in Math

* Terry Tao, considered by many to be the
greatest living mathematician, has an
essay about learning mathematics.

It explains why formal proofs and
rigorous arguments are an important
part of learning math - and why it can be
a bit tricky at times.

* You can read it online here.



https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

Your Questions



“What should my roommate
and I name our plants?”

I have fwo
suggesTions:




Back to CS103!



Part Four: Putting It All Together



To Recap

 We're assuming that, somehow, someone wrote a
function

bool willAccept(string function, string input);

that takes the code of a function and an input to
that function, then

 returns true if function(input) returns true, and

 returns false if function(input) doesn’t return true.

* Goal: Show that this decider is “self-defeating;”
its power is so great that it undermines itself.

* Idea: Convert the fortune teller story into a
program.



CAm I going\

to pay you
$42?
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—
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Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”




bool willAccept(string function, string input) {
// Returns true if function(input) returns
/] true. Returns false otherwise.

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !'willAccept(me, input);

}

If willAccept says trickster will
return true, then trickster
returns false.

If willAccept says trickster will

not return true, then trickster
trickster willAccept returns true.




bool willAccept(string function, string input) {
// Returns true if function(input) returns
/] true. Returns false otherwise. A self—defeating

object,

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

} Using that object

against ifself,




bool willAccept(string function, string input) {
// Returns true if function(input) returns
/] true. Returns false otherwise.

*The largest
integer n,”

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !'willAccept(me, input);

}

*The inTeger
n+ 1,”°

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.
Notice that n < n+1.
But then n isn’t the largest integer.

Contradiction! -ish



Theorem: A, ¢ R.



Theorem: A, ¢ R.
Proof:



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A_,,.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w. We consider two cases:



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true.

Case 2: willAccept(me, input) returns false.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
Arm, this means trickster(w) returns true.

Case 2: willAccept(me, input) returns false.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
Ay, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false.
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Proof: By contradiction; assume that A, € R. Then there is a decider
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Case 2: willAccept(me, input) returns false. Since willAccept decides
Arv, this means trickster(w) doesn’t return true.



Theorem: A, ¢ R.

Proof: By contradiction; assume that A, € R. Then there is a decider
D for A ,,. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
Ay, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides
Arv, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.
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returns true if function(w) returns true and returns false otherwise.
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how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong.
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Regular

Languages

All Languages



What Does This Mean?

* In one fell swoop, we've proven that

- A, 1s undecidable; there is no general

algorithm that can determine whether a TM
will accept a string.

« R # RE, because A, € Rbut A, € RE.

« What do these three statements really
mean? As in, why should you care?



A ¢ R

- What exactly does it mean for A, to be
undecidable?

Intuition: The only general way to find
out what a program will do is to run it.

» As you'll see, this means that it's provably
impossible for computers to be able to
answer most questions about what a
program will do.



A, ¢ R

« At a more fundamental level, the existence of
undecidable problems tells us the following:

There is a difference between what is true
and what we can discover is true.

 Given a TM M and a string w, one of these two
statements is true:

M accepts w M does not accept w

But since A, is undecidable, there is no

algorithm that can always determine which of
these statements is true!



R # RE

* Because R # RE, there is a difference
between decidability and recognizability:

In some sense, it is fundamentally
harder to solve a problem than it is to
check an answer.

 There are problems where, when the
answer is “yes,” you can confirm it (run a
recognizer), but where if you don’t have
the answer, you can’t come up with it in a
mechanical way (build a decider).




Next Time

« Why All This Matters
 Important, practical, undecidable problems.
* Intuiting RE
 What exactly is the class RE all about?
» Verifiers
« A totally different perspective on problem solving.

* Beyond RE

 Finding an impossible problem using very familiar
techniques.
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