
  

Unsolvable Problems
Part One



  

Outline for Today

● Self-Reference Revisited
● Programs that compute on themselves.

● Self-Defeating Objects
● Objects “too powerful” to exist.

● The Fortune Teller
● Can you escape the future?

● Why Do Programs Loop?
● … and can we eliminate loops?

● Undecidable Problems
● Something beyond the reach of algorithms.



  

Recap from Last Time



  

R and RE

● A language L is recognizable if there is a TM M 
with the following property:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, them M does not accept w.

– It might reject w, or it might loop on w.
● This is a “weak” notion of solving a problem.

● The class RE consists of all the recognizable 
languages.



  

R and RE

● A language L is decidable if there is a TM M with 
the following properties:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

M halts on all inputs.

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● This is a “strong” notion of solving a problem.

● The class R consists of all the decidable languages.



  

The Universal TM

● The universal Turing machine, denoted UTM, is a 
TM with the following behavior: when run on a 
string ⟨M, w⟩, where M is a TM and w is a string, 
UTM will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● ATM is the language recognized by the universal 
TM. This is the language

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }



  

Self-Referential Programs

● Computing devices can compute on their 
own source code:

Theorem: It is possible to construct
TMs that perform arbitrary computations 

on their own source code.
● This allows us to write programs that 

work on their own source code.



  What do each of these pieces of code do?

void cormorant() {
    string me = /* source code of
                 * cormorant
                 */;
    cout << me << endl;
}       

bool curlew(string input) {
    string me = /* source code of
                 * curlew
                 */;
    return input == me;
}

int avocet() {
    string me = /* source code of 
                 * avocet
                 */;
    int result = 0;
    for (char ch: me) {
        if (ch == 'a') result++;
    }
    return result;
}



  

New Stuff!



  

Part One: Self-Defeating Objects



  

A self-defeating object is an object whose 
essential properties ensure it doesn’t exist.



  

Question: Why is there no largest integer?

Answer: Because if n is the largest integer, 
what happens when we look at n+1?



  

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■-ish
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Self-Defeating Objects

We’re using n to 
construct something that 
undermines n, hence the 

term “self-defeating.”



  

An Important Detail



  

Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that x > x – 1.

So there’s no contradiction. ■-ish

Careful – we’re 
assuming what we’re 
trying to prove!

How do we know there’s 
no contradiction? We 
just checked one case.



  

Self-Defeating Objects

● If you can show

x exists → ⊥

then you know that x doesn’t exist. (This is 
a proof by contradiction.)

● If you can show

x exists → ⊤

you cannot conclude that x exists. (This is 
not a valid proof technique.)



  

Part Two: The Fortune Teller



  

The Fortune Teller

● A fortune teller 
appears who claims 
they can see into 
anyone’s future.

● For a nominal fee, 
the fortune teller 
will tell you 
anything you want 
to know about the 
future.



  

The Fortune Teller

● One day, a trickster arrives. The 
trickster thinks the fortune 
teller is lying and can’t really 
see the future.

● The trickster says the following:

“I have a yes/no question 
about the future. But before 
I ask my question, let’s talk 

payment.

If you answer yes, then I’ll 
pay you $137.

If you answer no, then I’ll 
pay you $42.

● The fortune teller thinks for a 
moment, then agrees.

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”



  

The Fortune Teller

● The trickster then 
asks this question:

“Am I going to
pay you $42?”

● The fortune teller 
is trapped!

● Talk to your 
neighbor – why? Trickster pays $137 if the

fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”



  

The Fortune Teller

● The payment scheme the fortune teller agreed to means

Fortune Teller Says Yes    ↔    Trickster Pays $137.
● The trickster’s question to the fortune teller means

Fortune Teller Says Yes    ↔    Trickster Pays $42.
● Putting this together, we get

Trickster Pays $42    ↔    Trickster Pays $137.
● This is impossible!

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”



  

The Fortune Teller

● The fortune teller is a self-defeating object.
● The trickster’s strategy is to couple the fortune teller’s 

behavior to what the future holds.
● The trickster’s behavior is chosen in advance to make the 

fortune teller’s answer wrong.
● Therefore, the fortune teller can’t answer all questions 

about all people in the future.

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”



  

Part Three: Why Do Programs Loop?



  

Thoughts on Loops

● In practice, the programs we write 
sometimes go into infinite loops.

● In Theoryland, Turing machines are allowed 
to loop. This happens if they don’t accept and 
don’t reject.

● Question: Why are infinite loops possible?
● Or rather: are infinite loops an inherent part 

of computation, or are they some weird sort 
of “accident” in how we program computers?



  

Thoughts on Loops

● Theorem: The language ATM is recognizable, 
but undecidable.
● There’s a recognizer for ATM (specifically, the 

universal Turing machine UTM).
● It is impossible to build a decider for this 

language.
● Stated differently, there’s a program we can 

write (a universal TM) that has to loop 
infinitely on some inputs.

● Goal: Prove this theorem, and explore its 
theoretical and philosophical implications.



  

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● The universal TM UTM has the following behavior 
when given as input a TM M and a string w:

● If M accepts w, then   UTM accepts ⟨M, w⟩.
● If M rejects w,  then   UTM rejects ⟨M, w⟩.
● If M loops on w, then   UTM loops on ⟨M, w⟩.

● UTM is a recognizer for ATM, but because of that last 
case it’s not a decider for ATM.



  

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Given a TM M and a string w, a decider D for ATM 
would need to have this behavior:

● If M accepts w, then     D accepts ⟨M, w⟩.
● If M rejects w,  then     D rejects  ⟨M, w⟩.
● If M loops on w, then     D rejects ⟨M, w⟩.

● This is basically the same set of requirements as 
UTM, except for what happens if M loops on w.

● Our goal is to prove that there is no way to build a 
program that meets these requirements.

?

?

?



  

ATM Revisited

● We can envision a decider for ATM as a function

bool willAccept(string fn, string input)

that takes as input the source code of a function (fn) 
and a string representing an input to that function 
(input).

● It then does the following:
● If fn(input) returns true, willAccept(fn, input) returns true.
● If fn(input) returns false, willAccept(fn, input) returns false.
● If fn(input) loops, then willAccept(fn, input) returns false.

● We’re going to show it’s impossible to write a function 
that actually does this. But for now, let’s just explore 
what such a decider would do.



  
For each of these instances, what does
willAccept(function, input) return?

function = "bool f(string input) {
  if (input == "") return false;
  return input[0] == 'a';
}";

input = "abbababba";

willAccept(function, input) = ?

function = "bool g(string input) {
  while (true) {
    input += input;
  }
}";

input = "yay! ";

willAccept(function, input) = ?

function = "bool j(string input) {
  int n = input.length();
  while (n > 1) {
    if (n % 2 == 0) n /= 2;
    else n = 3*n + 1;
  }
  return true;
}";
 

input = /* 10137 a's */;

willAccept(function, input) = ?

function = "bool h(string input) {
  for (char c: input) {
    if (c != input[0]) return true;
  }
  return false;
}";
 

input = "aaaaaa";

willAccept(function, input) = ?



  

● Earlier this quarter you explored sums of 
four squares. Now, let’s talk about sums 
of three cubes.

● Are there integers x, y, and z where…
● x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
● x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
● x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
● x3 + y3 + z3 = 13? Nope!

Deciding ATM



  

● Surprising fact: until 2019, no one knew 
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this 

answer:

x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of November 2021, no one knows whether 
there are integers x, y, and z where

x3 + y3 + z3 = 114.

Deciding ATM



  

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }
● Here’s code for a recognizer to see whether such a triple exists:

bool hasTriple(int n) {                  
  for (int max = 0; ; max++)             
    for (int x = -max; x <= max; x++)    
      for (int y = -max; y <= max; y++)  
        for (int z = -max; z <= max; z++)
          if (x*x*x + y*y*y + z*z*z == n)
            return true;                 
}                                        

● Imagine calling willAccept(/* hasTriple code */, 114).
● If such a triple exists, willAccept returns true.
● If no such triple exists, willAccept returns false.

● Key Intuition: However willAccept is implemented, it has to be  
clever enough to resolve open problems in mathematics!

Deciding ATM



  

Why is ATM Hard?

● Intuition: A decider for ATM would be able to…
● … determine whether the hailstone sequence terminates 

for any input. (Write a recognizer that runs the hailstone 
sequence, then feed it into the decider for ATM.)

● … see if any number is the sum of three cubes. (Write a 
recognizer that tries all infinitely many triples of 
integers, then feed it into the decider for ATM.)

● … and much, much more.
● In other words, this seemingly simple problem of 

“is this program going to terminate?” accidentally 
scoops up a bunch of other seemingly harder 
problems.



  

Time-Out for Announcements!



  

Info session tomorrow 
(Thursday) at 2:30PM. 
RSVP using this link.

https://stanford.zoom.us/meeting/register/tJwtfu2sqzsrGdOhxP9B4UJsBeBG8IChWq-N


  

On Rigor and Formalism in Math

● Terry Tao, considered by many to be the 
greatest living mathematician, has an 
essay about learning mathematics.

● It explains why formal proofs and 
rigorous arguments are an important 
part of learning math – and why it can be 
a bit tricky at times.

● You can read it online here.

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/


  

Your Questions



  

“What should my roommate
and I name our plants?”

I have two 
suggestions!



  

Back to CS103!



  

Part Four: Putting It All Together



  

To Recap

● We’re assuming that, somehow, someone wrote a 
function

bool willAccept(string function, string input); 

that takes the code of a function and an input to 
that function, then
● returns true if function(input) returns true, and
● returns false if function(input) doesn’t return true.

● Goal: Show that this decider is “self-defeating;” 
its power is so great that it undermines itself.

● Idea: Convert the fortune teller story into a 
program.



  

Trickster pays $137 if the
fortune teller answers “yes.”

Trickster pays $42 if the
fortune teller answers “no.”

Am I going
to pay you

$42?



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns
   // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

trickster willAccept

If willAccept says trickster will
return true, then trickster

returns false.

If willAccept says trickster will
not return true, then trickster

returns true.



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns
   // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

A self-defeating 
object.

Using that object 
against itself.



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns
   // true. Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

“The largest
integer n.”

“The integer
n + 1.”

  Theorem: There is no largest integer.

  Proof sketch: Suppose for the sake of contradiction
 that there is a largest integer. Call that integer n.

 Consider the integer n+1.

  Notice that n < n+1.

 But then n isn’t the largest integer.

 Contradiction! ■-ish



  

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider
D for ATM. We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then
returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

        bool trickster(string input) {
            string me = /* source code of trickster */;
            return !willAccept(me, input);
        } 

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides 
ATM, this means trickster(w) returns false. However, given how
trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■
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        } 

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides
ATM, this means trickster(w) returns true. However, given how
trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides 
ATM, this means trickster(w) doesn’t return true. However, given
how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, ATM ∉ R. ■
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What Does This Mean?

● In one fell swoop, we've proven that
● ATM is undecidable; there is no general 

algorithm that can determine whether a TM 
will accept a string.

● R ≠ RE, because ATM ∉ R but ATM ∈ RE.

● What do these three statements really 
mean? As in, why should you care?



  

ATM ∉ R

● What exactly does it mean for ATM to be 
undecidable?

Intuition: The only general way to find 
out what a program will do is to run it.

● As you'll see, this means that it's provably 
impossible for computers to be able to 
answer most questions about what a 
program will do.



  

ATM ∉ R

● At a more fundamental level, the existence of 
undecidable problems tells us the following:

There is a difference between what is true 
and what we can discover is true.

● Given a TM M and a string w, one of these two 
statements is true:

M accepts w              M does not accept w

But since ATM is undecidable, there is no 
algorithm that can always determine which of 
these statements is true!



  

R ≠ RE

● Because R ≠ RE, there is a difference 
between decidability and recognizability:

In some sense, it is fundamentally 
harder to solve a problem than it is to 

check an answer.
● There are problems where, when the 

answer is “yes,” you can confirm it (run a 
recognizer), but where if you don’t have 
the answer, you can’t come up with it in a 
mechanical way (build a decider).



  

Next Time

● Why All This Matters
● Important, practical, undecidable problems.

● Intuiting RE
● What exactly is the class RE all about?

● Verifiers
● A totally different perspective on problem solving.

● Beyond RE
● Finding an impossible problem using very familiar 

techniques.
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