Unsolvable Problems

Part Two



Outline for Today

« More on Undecidability
 Even more problems we can’t solve.
A Different Perspective on RE
 What exactly does “recognizability” mean?
» Verifiers
A new approach to problem-solving.

- Beyond RE

* A beautiful example of an impossible problem.



Recap from Last Time



bool willAccept(string function, string input) {
// Returns true if function(input) returns true.
// Returns false otherwise.

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

trickster(input) returns true

«

willAccept(me, input) returns true

L

trickster(input) returns false

trickster willAccept



Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that
willAccept(me, input) returns true if and only if trickster(input) returns true.
Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) returns false.
This means that
trickster(input) returns true if and only if trickster(input) returns false.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and Arv is undecidable. W



Regular

Languages

All Languages



New Stuff!



More Impossibility Results



The Halting Problem

* The most famous undecidable problem is the halting
problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

« As a formal language, this problem would be
expressed as

HALT = { (M, w) | M is a TM that halts on w }
« Theorem: HALT is recognizable, but undecidable.

 There’s a recognizer for HALT.
» There is no decider for HALT.



HALT € RE

* Claim: HALT € RE.

» Idea: If you were certain that a TM M halted on a
string w, could you convince me of that?

* Yes - just run M on w and see what happens!

bool willHalt(string TM, string w) {
set up a simulation of M running on w;
while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}

}




Theorem: The halting problem is
undecidable.



A Decider for HALT

« Let’s suppose that, somehow, we managed to build a decider
for HALT = { (M, w) | M is a TM that halts on w }.

 Schematically, that decider would look like this:

M Yes, M halts on w.
Decider
vy, for HALT
No, M loops on w.

 We could represent this decider in software as a method

bool willHalt(string function, string input);
that takes as input a function function and a string input, then

« returns true if function(input) returns anything (halts), and
* returns false if function(input) never returns anything (loops).



bool willHalt(string function, string input) {
// Returns true if function(input) halts.
// Returns false otherwise.

}

bool trickster(string input) {
string me = /* source code of trickster */;

if (willHalt(me, input)) {
while (true) {
// Do nothing

}
} else {

return true;

trickster(input) halts

«

willHalt(me, input) returns true

L

trickster(input) loops

trickster willHalt



Theorem: HALT ¢ R.

Proof: By contradiction; assume that HALT € R. Then there is a decider D for
HALT. We can represent D as a function

bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this
function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
if (willHalt(me, input)) {
while (true) { }
} else {
return true;
}

}

Since willHalt decides HALT and me holds the source of trickster, we know that
willHalt(me, input) returns true if and only if trickster(input) halts.
Given how trickster is written, we see that
willHalt(me, input) returns true if and only if trickster(input) loops.
This means that
trickster(input) halts if and only if trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and HALT is undecidable.




Regular

Languages

HALT

All Languages



So What?

 These problems might not seem all that
exciting, so who cares if we can't solve
them?

 Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.






Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.



Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.

Engineering Prowess!



Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.

QQQ —

Engineering Prowess! Awesome Engine!




Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.

QQQ —

Engineering Prowess! Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOx pollutants.
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Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.

Qﬁﬁ —

Engineering Prowess! Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOx pollutants.
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Fact: Almost all “regulatory problems”
about computer programs are undecidable.
That is, almost all problems of the form
“does this program have [behavioral
property X]” are undecidable.

This can be formalized through a result
called Rice’s Theorem; take CS154 for
details!



Secure Voting

* Suppose that you want to make a voting
machine for use in an election between two
parties.

e Let X = {r, d}. Astring w € 2* corresponds
to a series of votes for the candidates.

 Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”



Secure Voting

* A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

* Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?



A secure voting machine is a TM M where
M accepts w € {r, d}* if and only if w has more r’s than d’s.

bool bee(string input) {
int numRs = countRsIn(input);
int numDs = countDsIn(input);

return numRs > numDs;

}

A (simple) secure voting machine.

bool topaz(string input) {
}

return input[0] == 'r"';

A (simple) insecure voting machine.

bool anna(string input) {
int numRs countRsIn(input);
int numDs countDsIn(input);

if (numRs = numDs) {
return false;

} else if (numRs < numDs) {
return false;

} else {
return true;
}

An (evil) insecure voting machine.

bool green(string input) {
int n = input.length();
while (n > 1) {
if (n %2 ==0) n /= 2;

else n = 3*n + 1;
}
int numRs = countRsIn(input);
int numDs = countDsIn(input);

return numRs > numDs;

No one knows!



Secure Voting

* A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

* Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?



A Decider tfor Secure Voting

* Let’s suppose that, somehow, we managed to build a
decider for the secure voting problem.

« Schematically, that decider would look like this:

Yes, M is a secure voting
M { Decider }<‘; machine.
for secure
voting
No, M is not a secure
voting machine.

 We could represent this decider in software as a method

bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that
function is a secure voting machine.



bool isSecureVotingMachine(string function) {
// Returns whether function accepts only
[/ strings with more r’s than d’s.

}

bool trickster(string input) {
string me = /* source code of trickster */;

if (isSecureVotingMachine(me)) {
return countRsIn(input) <= countDsIn(input);

} else {
return countRsIn(input) > countDsIn(input);

trickster is a secure voting machine

L

isSecureVotingMachine(me) returns true

L

trickster isn’t a secure voting machine.

trickster isSecurevVotingMachine



Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a
secure voting machine (that is, whether it accepts precisely the strings with more r’s than
d’s). Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
if (isSecureVotingMachine(me)) {
return /* if input has at most as many r’s as d’s */;

} else {
return /* if input has more r’s than d’s */;
}

}

Since isSecureVotingMachine decides the secure voting problem and me holds the source of
trickster, we know that

isSecureVotingMachine(me) returns true if and only if trickster is a secure voting machine.
Given how trickster is written, we see that
isSecureVotingMachine(me) returns true if and only if trickster isn’t a secure voting machine
This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure
voting problem is undecidable. H



Interpreting this Result

* The previous argument tells us that there is no
general algorithm that we can follow to determine
whether a program is a secure voting machine. In
other words, any general algorithm to check voting
machines will always be wrong on at least one input.

e So what can we do?

* Design algorithms that work in some, but not all cases.
(This is often done in practice.)

« Fall back on human verification of voting machines. (We do
that too.)

 Carry a healthy degree of skepticism about electronic
voting machines. (Then again, did we even need the
theoretical result for this?)



Time-Out for Announcements!



Problem Set Seven Graded

75% Percentile: 62 / 63 (98%)
50" Percentile: 60 / 63 (95%)
25% Percentile: 55 / 63 (87%)

0-42 43 - 45 46 - 48 49 - 51 52 - 54 55 - 57 58 - 60 61 - 63



Problem Set Nine

 Problem Set Eight was due today at
2:30PM.

 Problem Set Nine goes out today. It’s due
the Friday after break at 2:30PM.

« It’s designed to take the usual amount of
time, but you’ve got the full two weeks for it.

* Play around with the limits of R and RE
languages - the upper extent of
computation!

 See how everything fits together!



Thanksgiving Break Logistics

 We will not be holding our regular office
hours over the break.

« We will be periodically checking EdStem,
but not at the level we usually do.

* Once we’re back from break, we’ll
resume normal our office hours and
EdStem rotation.



The Last Two Guides

 We’ve posted two final guides to the course
website:

 The Guide to Self-Reference, which talks about
proofs of undecidability via self-reference.

 The Guide to the Lava Diagram, which
provides an intuition for how different classes of
languages relate to one another.

e Give these a read - there’s a ton of useful
information in there!



Preparing for the Final Exam

 We’ve posted a gigantic compendium of
CS103 practice problems on the course
website.

* You can search for problems based on
the topics they cover, whether solutions
are available, whether they’'re ones we

particularly like, and whether they have
solutions.



Your Questions



“Tips for dealing with burnout?”

Everyone is different, so I can't claim fo have
universal advice, From experience, one of the best
fricks is to set boundaries and hold yourselt to
them, Forgive yourself, and make sure you make
fime in your day to decompress and do something
That replenishes you.,




“What are you thankful for?”

A greatl
many things,




“Tell us a tfun sibling story?”




Back to CS103!



Beyond R and RE



Beyond R and RE

e We've now seen how to use self-reference
as a tool for showing undecidability
(finding languages not in R).

* We still have not broken out of RE yet,
though.

* To do so, we will need to build up a
better intuition for the class RE.



What exactly is the class RE?



RE, Formally

« Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M that recognizes L }

* Since R # RE, there is no general way to
“solve” problems in the class RE, if by “solve”
you mean “make a computer program that can
always tell you the correct answer.”

 So what exactly are the sorts of languages in
RE?



Does this graph contain

mutually adjacent no




Does this graph contain

mutually adjacent no




Does this graph contain

mutually adjacent no




Key Intuition:

A language L is in RE if, for any string w, it
you are convinced that w € L, there is some
way you could prove that to someone else.



Verification

- O

Does this graph have a Hamiltonian
path (a path that passes through
every node exactly once?)



Verification

Does this graph have a Hamiltonian
path (a path that passes through
every node exactly once?)



Verification

11

Does the hailstone sequence
terminate for this number?



Verification

11

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

34

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

17

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

D2

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

20

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

13

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

40

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

20

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

10

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

D

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

16

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

3

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

4

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

2

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

1

Try vunning tourfeen sfeps of the Hailstone sequence,

Does the hailstone sequence
terminate for this number?



Verification

- O

Does this graph have a Hamiltonian
path (a simple path that passes
through every node exactly once?)



Verification

1 2
e @
S 4

Does this graph have a Hamiltonian
path (a simple path that passes
through every node exactly once?)



Verification

11

Does the hailstone sequence
terminate for this number?



Verification

11

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verification

34

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verification

17

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verification

D2

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verification

20

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verification

13

Try running five steps ot the Hailstone sequence.,

Does the hailstone sequence
terminate for this number?



Verifiers

* A verifier for a language Lisa TM V
with the following two properties:

V halts on all inputs.
Vwe 3X* (we L o dc € 2*. V accepts (w, c))

* Intuitively, what does this mean?



Deciders and Verifiers

input string (w)

-

“Solve the problem”

& D

Decider M
for L

< 4

M halts on all inputs.
w € L & M accepts w

“Check an answer”

input string (w) D
ficate (© ~  Verifier V
certifica
. for L
< v

V halts on all inputs.
w € L o dc € 2*, V accepts (w, c)

If M accepts, then
w € L.

If M rejects, then
w & L.

If V accepts (w, c),
then w € L.

If V rejects (w, c),
we don't know
whether w € L.




Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe X*, (weL o dc € 2*. Vaccepts (w, c))
 Some notes about V:
« If V accepts (w, c), we're guaranteed w € L.

* If Vrejects (w, c), then either

- w € L, but you gave the wrong c, or
- w € L, so no possible ¢ will work.



Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe 3X*, (weL o dc € XZ*. Vaccepts (w, c))
« Some notes about V:

* Notice that the certificate c is existentially
quantified. Any string w € L. must have at least
one c that causes V to accept, and possibly
more.

* Vis required to halt, so given any potential
certificate ¢ for w, you can check whether the
certificate is correct.



Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe 3X*, (weL o dc € XZ*. Vaccepts (w, c))
« Some notes about V:

e Notice that Visn’t a decider for L and isn’t a
recognizer for L.

* The job of V' is just to check certificates, not to
decide membership in L.



Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

Vwe 3X*, (weL o dc € XZ*. Vaccepts (w, c))
« Some notes about V:

* Although this formal definition works with a

string ¢, remember that ¢ can be an encoding of
some other object.

* In practice, ¢ will likely just be “some other
auxiliary data that helps you out.”



Some Verifiers

Let L be the following language:

= { (G) | G is a graph and G has a
Hamiltonian path }

(A Hamiltonian path is one that passes through all
nodes in the graph G.)

Let's see how to build a verifier for L. Our verifier will
take as input

* a graph G, and
* a certificate c.

The certificate ¢ should be some evidence that
suggests that G has a Hamiltonian path.

What information could we put into the certificate?



Verification

- O

Is there a simple path that goes
through every node exactly once?



Verification

Is there a simple path that goes
through every node exactly once?



Some Verifiers

* Let L be the following language:
= { (G) | G is a graph with a Hamiltonian path }

bool checkHamiltonian(Graph G, vector<Node> c) {
if (c.size() !'= G.numNodes()) return false;
if (containsDuplicate(c)) return false;

for (int 1 = 0; 1 + 1 < c.size(); i++) {
if (!'G.hasEdge(c[i], c[1+1])) return false;
}

return true;

}

Do you see why (G) € L if and only if there is a ¢ where
checkHamiltonian(G, c) returns true?

* Do you see why checkHamiltonian always halts?



A Very Nifty Verifier

Consider A_
A, =1(M,w)| MisaTM and M accepts w }.

This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!



A Very Nifty Verifier

- Consider A_:
A, =1{1{{M,w)|MisaTM and M accepts w }.

- We know that U_, is a recognizer for A_ . It is
also a verifier for A_,?

* No, for two reasons:
- U,,, doesn’t always halt. (Do you see why?)

- U, takes as input a TM M and a string w. A
verifier also needs a certificate.



A Very Nifty Verifier

Consider A, :
A, =1{1{{M,w)|MisaTM and M accepts w }.
A verifier for A, would take as input

« ATM M,
* a string w, and
* a certificate c.

The certificate ¢ should be some evidence that
suggests that M accepts w.

What could our certificate be?



Some Verifiers

- Consider A
A, =1M,w)|MisaTM and M accepts w }.

bool checkWillAccept(TM M, string w, int c) {
set up a simulation of M running on w;
for (int 1 =0; 1 < c; 1++) {
simulate the next step of M running on w;

}

return whether M is in an accepting state;

* Do you see why M accepts w if and only if there is
a ¢ such that checkWillAccept(M, w, c) returns true?

* Do you see why checkWillAccept always halts?



What languages are verifiable?



Theorem: It L is a language, then there is
a verifier for L if and only if L. € RE.



Where We’ve Been

State Elimination

NFA Regex

Thompson’s Algorithm



Where We're Going

Try all certificates

Verifier Recognizer

Enforce a step count



Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”
input string (w) D

" Verifier V
certificate (c) | for L

R e




Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.
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Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer ]\A/I for L.
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input string (w) /£ D

" Verifier V
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Verifiers and RE
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Verifiers and RE

« Theorem: If V is a verifier for L, then L. € RE.
* Proof sketch: Consider the following program:

bool isInL(string w) {
for (each string c) {
if (V accepts (w, c)) return true;
}

}

If w € L, there is some ¢ € 2* where V accepts (w, c).
The function isInL tries all possible strings as
certificates, so it will eventually find ¢ (or some other
working certificate), see V accept (w, c), then return
true. Conversely, if isInL(w) returns true, then there
was some string c¢ such that V accepted (w, c), so we
seethat we L. R




Verifiers and RE

e Theorem: If L. € RE, then there is a verifier for L.

* Proof goal: Beginning with a recognizer M for
the language L, show how to construct a verifier
V for L.



We have a recognizer for a language.
We want to turn it into a verifier:
Where did we see this before?



Observation: This
trick of enforcing a
step count limits how
long M can run for!

A.,,=1(M,w)|MisaTM and M accepts w }.

bool checkWillAccept(TM M, string w, int c) {
set up a simulation of M running on w;
for (int 1 =0; 1 < c; 1++) {
simulate the next step of M running on w;

}

return whether M is in an accepting state;




Verifiers and RE

e Theorem: If L. € RE, then there is a verifier for L.

 Proof sketch: Let L be a RE language and let M be a recognizer
for it. Consider this function:

bool checkIsInL(string w, int c) {
TM M = /* hardcoded version of a recognizer for L */;
set up a simulation of M running on w;
for (int 1 =0; 1 < c; i1++) {
simulate the next step of M running on W;

}

return whether M is in an accepting state;

Note that checkIsInL always halts, since each step takes only finite
time to complete. Next, notice that if there is a ¢ where
checkIsInL(w, c) returns true, then M accepted w after running for
c steps, so w € L. Conversely, if w € L, then M accepts w after
some number of steps (call that number ¢). Then checkIsInL(w, c)
will run M on w for c¢ steps, watch M accept w, then return true.



RE and Proofs

» Verifiers and recognizers give two different
perspectives on the “proot” intuition for RE.

» Verifiers are explicitly built to check proofs that
strings are in the language.

 If you know that some string w belongs to the
language and you have the prooft of it, you can
convince someone else that w € L.

* You can think of a recognizer as a device that
“searches” for a proof that w € L.

 If it finds it, great!
 If not, it might loop forever.



RE and Proofs

 If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

 Intuitively, a language is not in RE if
there is no general way to prove that a
given string w € L actually belongs to L.

* In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!



Finding Non-RE Languages



Finding Non-RE Languages

* Right now, we know that non-RE
languages exist, but we have no idea
what they look like.

 How might we find one?



Recognizers and Recognizability

* Recall: We say that M is a recognizer for L if
the following is true:

Vwe X*, weLlL o M accepts w).

« This above description applies to all strings,
including strings that, by pure coincidence,
happen to be encodings of TMs.

« What happens if we list off all Turing
machines, looking at how those TMs behave
given other TMs as input?






Mo
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M:>

M3

Ma

Ms

All Turing machines,
listed in some order.
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(M2)

(M3)
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(Ms) ...

Mo

M

M:>

M3

Ma

Ms

All descriptions
of TMs, listed in
the same order.
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Flip all *accept”
to *no” and

ViceE—Versa
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“The language of all
TMs that do not accept
their descriptions.”
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{{(M)|M is a'TM that
does not accept (M) }



Diagonalization Revisited

 The diagonalization language, which we
denote L, is defined as

L,={(M)|M is a'TM and M does not accept (M) }

 We constructed this language to be
different from the language of every TM.

- Theretore, L ¢ RE! Let’s go prove this.



L,={(M)|MisaTM and M does not accept (M) }
Theorem: L ¢ RE.

Proof: Assume for the sake of contradiction that L, € RE. This
means that there is a recognizer R for L.

Now, focus on what happens if we run recognizer R on its own
string encoding (that is, running R on (R)). Since R is a recognizer
for L, we see that

R accepts (R) if and only if (R) € L.
By definition of L, we know that
(R) € L, if and only if R does not accept (R).

Combining the two above statements tells us that
R accepts (R) if and only if R does not accept (R).

This is impossible. We’ve reached a contradiction, so our
assumption was wrong, and so L, ¢ RE. l



Regular
Languages

HALT

All Languages



What This Means

 On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

 Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

« This result can be formalized as a result called
Godel's incompleteness theorem, one of the
most important mathematical results of all time.

e Want to learn more? Take Phil 152 or CS154!



What This Means

* On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

 There's no automatic way to do math. There are
true statements that we can't prove.

« That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.



Where We Stand

« We've just done a crazy, whirlwind tour of computability
theory:

« The Church-Turing thesis tells us that TMs give us a
mechanism for studying computation in the abstract.

 Universal computers - computers as we know them - are not
just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

« Self-reference is an inherent consequence of computational
power.

 Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

 Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.



The Big Picture

Recog-
nizer




Where We've Been

* The class R represents problems that can be
solved by a computer.

 The class RE represents problems where “yes”
answers can be verified by a computer.



Where We're Going

* The class P represents problems that can be
solved efficiently by a computer.

 The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.



Next Time

» Introduction to Complexity Theory

 Not all decidable problems are created
equal!

e The Classes P and NP

 Two fundamental and important complexity
classes.

« The P = NP Question

« A literal million-dollar question!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172

