

Unsolvable Problems
Part Two

Outline for Today

● More on Undecidability
● Even more problems we can’t solve.

● A Different Perspective on RE
● What exactly does “recognizability” mean?

● Verifiers
● A new approach to problem-solving.

● Beyond RE
● A beautiful example of an impossible problem.

Recap from Last Time

bool willAccept(string function, string input) {
 // Returns true if function(input) returns
true.
 // Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 return !willAccept(me, input);
}

trickster willAccept

trickster(input) returns true

↔

willAccept(me, input) returns true

↔

trickster(input) returns false

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider D for ATM.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Since willAccept decides ATM and me holds the source of trickster, we know that

willAccept(me, input) returns true if and only if trickster(input) returns true.

Given how trickster is written, we see that

willAccept(me, input) returns true if and only if trickster(input) returns false.

This means that

trickster(input) returns true if and only if trickster(input) returns false.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and ATM is undecidable. ■

Regular
Languages CFLs

All Languages

R RE

ATM

New Stuff!

More Impossibility Results

The Halting Problem

● The most famous undecidable problem is the halting
problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

● As a formal language, this problem would be
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● Theorem: HALT is recognizable, but undecidable.

● There’s a recognizer for HALT.
● There is no decider for HALT.

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

bool willHalt(string TM, string w) {
 set up a simulation of M running on w;

while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}
}

Theorem: The halting problem is
undecidable.

A Decider for HALT

● Let’s suppose that, somehow, we managed to build a decider
for HALT = { ⟨M, w⟩ | M is a TM that halts on w }.

● Schematically, that decider would look like this:

● We could represent this decider in software as a method

bool willHalt(string function, string input);

that takes as input a function function and a string input, then
● returns true if function(input) returns anything (halts), and
● returns false if function(input) never returns anything (loops).

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.

bool willHalt(string function, string input) {
 // Returns true if function(input) halts.
 // Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 if (willHalt(me, input)) {
 while (true) {
 // Do nothing
 }
 } else {
 return true;
 }
}

trickster willHalt

trickster(input) halts

↔

willHalt(me, input) returns true

↔

trickster(input) loops

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there is a decider D for
HALT. We can represent D as a function

bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this
function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 if (willHalt(me, input)) {
 while (true) { }
 } else {
 return true;
 }
 }

Since willHalt decides HALT and me holds the source of trickster, we know that

willHalt(me, input) returns true if and only if trickster(input) halts.

Given how trickster is written, we see that

willHalt(me, input) returns true if and only if trickster(input) loops.

This means that

trickster(input) halts if and only if trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and HALT is undecidable. ■

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

So What?

● These problems might not seem all that
exciting, so who cares if we can't solve
them?

● Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Analogy Time!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!

Fact: Almost all “regulatory problems”
about computer programs are undecidable.

That is, almost all problems of the form
“does this program have [behavioral

property X]” are undecidable.

This can be formalized through a result
called Rice’s Theorem; take CS154 for

details!

Secure Voting

● Suppose that you want to make a voting
machine for use in an election between two
parties.

● Let Σ = {r, d}. A string w ∈ Σ* corresponds
to a series of votes for the candidates.

● Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”

Secure Voting

● A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

● Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

bool bee(string input) {
 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 return numRs > numDs;
}

bool topaz(string input) {
 return input[0] == 'r';
}

bool anna(string input) {
 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 if (numRs = numDs) {
 return false;
 } else if (numRs < numDs) {
 return false;
 } else {
 return true;
 }
}

bool green(string input) {

 int n = input.length();
 while (n > 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }

 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 return numRs > numDs;
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
M accepts w ∈ {r, d}* if and only if w has more r’s than d’s.

Secure Voting

● A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

● Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

A Decider for Secure Voting

● Let’s suppose that, somehow, we managed to build a
decider for the secure voting problem.

● Schematically, that decider would look like this:

● We could represent this decider in software as a method

bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that
function is a secure voting machine.

Decider
for secure

voting

M

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecureVotingMachine(string function) {
 // Returns whether function accepts only
 // strings with more r’s than d’s.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 if (isSecureVotingMachine(me)) {
 return countRsIn(input) <= countDsIn(input);
 } else {
 return countRsIn(input) > countDsIn(input);
 }
}

trickster isSecureVotingMachine

trickster is a secure voting machine

↔

isSecureVotingMachine(me) returns true

↔

trickster isn’t a secure voting machine.

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a
secure voting machine (that is, whether it accepts precisely the strings with more r’s than
d’s). Given this, consider this function trickster:

 bool trickster(string input) {
 string me = /* source code of trickster */;
 if (isSecureVotingMachine(me)) {
 return /* if input has at most as many r’s as d’s */;
 } else {
 return /* if input has more r’s than d’s */;
 }
 }

Since isSecureVotingMachine decides the secure voting problem and me holds the source of
trickster, we know that

isSecureVotingMachine(me) returns true if and only if trickster is a secure voting machine.

Given how trickster is written, we see that

isSecureVotingMachine(me) returns true if and only if trickster isn’t a secure voting machine

This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure
voting problem is undecidable. ■

Interpreting this Result

● The previous argument tells us that there is no
general algorithm that we can follow to determine
whether a program is a secure voting machine. In
other words, any general algorithm to check voting
machines will always be wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases.

(This is often done in practice.)
● Fall back on human verification of voting machines. (We do

that too.)
● Carry a healthy degree of skepticism about electronic

voting machines. (Then again, did we even need the
theoretical result for this?)

Time-Out for Announcements!

0 – 42 43 – 45 46 – 48 49 – 51 52 – 54 55 – 57 58 – 60 61 – 63

Problem Set Seven Graded

75th Percentile: 62 / 63 (98%)
50th Percentile: 60 / 63 (95%)
25th Percentile: 55 / 63 (87%)

Problem Set Nine

● Problem Set Eight was due today at
2:30PM.

● Problem Set Nine goes out today. It’s due
the Friday after break at 2:30PM.
● It’s designed to take the usual amount of

time, but you’ve got the full two weeks for it.
● Play around with the limits of R and RE

languages – the upper extent of
computation!

● See how everything fits together!

Thanksgiving Break Logistics

● We will not be holding our regular office
hours over the break.

● We will be periodically checking EdStem,
but not at the level we usually do.

● Once we’re back from break, we’ll
resume normal our office hours and
EdStem rotation.

The Last Two Guides

● We’ve posted two final guides to the course
website:
● The Guide to Self-Reference, which talks about

proofs of undecidability via self-reference.
● The Guide to the Lava Diagram, which

provides an intuition for how different classes of
languages relate to one another.

● Give these a read – there’s a ton of useful
information in there!

Preparing for the Final Exam

● We’ve posted a gigantic compendium of
CS103 practice problems on the course
website.

● You can search for problems based on
the topics they cover, whether solutions
are available, whether they’re ones we
particularly like, and whether they have
solutions.

Your Questions

“Tips for dealing with burnout?”

Everyone is different, so I can’t claim to have
universal advice. From experience, one of the best
tricks is to set boundaries and hold yourself to
them. Forgive yourself, and make sure you make
time in your day to decompress and do something

that replenishes you.

“What are you thankful for?”

A great
many things.

😃

“Tell us a fun sibling story?”

Sure!

Back to CS103!

Beyond R and RE

Beyond R and RE

● We've now seen how to use self-reference
as a tool for showing undecidability
(finding languages not in R).

● We still have not broken out of RE yet,
though.

● To do so, we will need to build up a
better intuition for the class RE.

What exactly is the class RE?

RE, Formally

● Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M that recognizes L }
● Since R ≠ RE, there is no general way to

“solve” problems in the class RE, if by “solve”
you mean “make a computer program that can
always tell you the correct answer.”

● So what exactly are the sorts of languages in
RE?

Does this graph contain four
mutually adjacent nodes?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Verification

Does this graph have a Hamiltonian
path (a path that passes through

every node exactly once?)

1

2

5

4

6

3

Verification

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does the hailstone sequence
terminate for this number?

11

Try running five steps of the Hailstone sequence.

Verifiers

● A verifier for a language L is a TM V
with the following two properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check an answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● If V accepts ⟨w, c⟩, we're guaranteed w ∈ L.

● If V rejects ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that the certificate c is existentially
quantified. Any string w ∈ L must have at least
one c that causes V to accept, and possibly
more.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that V isn’t a decider for L and isn’t a
recognizer for L.

● The job of V is just to check certificates, not to
decide membership in L.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Although this formal definition works with a
string c, remember that c can be an encoding of
some other object.

● In practice, c will likely just be “some other
auxiliary data that helps you out.”

Some Verifiers

● Let L be the following language:

 L = { ⟨G⟩ | G is a graph and G has a
 Hamiltonian path }

● (A Hamiltonian path is one that passes through all
nodes in the graph G.)

● Let's see how to build a verifier for L. Our verifier will
take as input
● a graph G, and
● a certificate c.

● The certificate c should be some evidence that
suggests that G has a Hamiltonian path.

● What information could we put into the certificate?

Verification

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Some Verifiers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

● Do you see why ⟨G⟩ ∈ L if and only if there is a c where
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (int i = 0; i + 1 < c.size(); i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

A Very Nifty Verifier

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

A Very Nifty Verifier

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● We know that UTM is a recognizer for ATM. It is
also a verifier for ATM?

● No, for two reasons:

● UTM doesn’t always halt. (Do you see why?)

● UTM takes as input a TM M and a string w. A
verifier also needs a certificate.

A Very Nifty Verifier

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● A verifier for ATM would take as input

● A TM M,
● a string w, and
● a certificate c.

● The certificate c should be some evidence that
suggests that M accepts w.

● What could our certificate be?

Some Verifiers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Do you see why M accepts w if and only if there is
a c such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

What languages are verifiable?

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩.
The function isInL tries all possible strings as
certificates, so it will eventually find c (or some other
working certificate), see V accept ⟨w, c⟩, then return
true. Conversely, if isInL(w) returns true, then there
was some string c such that V accepted ⟨w, c⟩, so we
see that w ∈ L. ■

bool isInL(string w) {
 for (each string c) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
}

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for

the language L, show how to construct a verifier
V for L.

We have a recognizer for a language.
We want to turn it into a verifier.
Where did we see this before?

Some Verifiers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

Do you see why M accepts w iff there is some c
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

Observation: This
trick of enforcing a

step count limits how
long M can run for!

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Let L be a RE language and let M be a recognizer

for it. Consider this function:

Note that checkIsInL always halts, since each step takes only finite
time to complete. Next, notice that if there is a c where
checkIsInL(w, c) returns true, then M accepted w after running for
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after
some number of steps (call that number c). Then checkIsInL(w, c)
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
 TM M = /* hardcoded version of a recognizer for L */;
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

RE and Proofs

● Verifiers and recognizers give two different
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that
strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.

RE and Proofs

● If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

● Intuitively, a language is not in RE if
there is no general way to prove that a
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

Finding Non-RE Languages

Finding Non-RE Languages

● Right now, we know that non-RE
languages exist, but we have no idea
what they look like.

● How might we find one?

Recognizers and Recognizability

● Recall: We say that M is a recognizer for L if
the following is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w).
● This above description applies to all strings,

including strings that, by pure coincidence,
happen to be encodings of TMs.

● What happens if we list off all Turing
machines, looking at how those TMs behave
given other TMs as input?

All Turing machines,
listed in some order.

M₁

M₂

M₀

M₃

M₄

M₅

…

All descriptions
of TMs, listed in
the same order.

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

Flip all “accept”
to “no” and
vice-versa

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behavior!

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

“The language of all
TMs that do not accept

their descriptions.”

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be
different from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: Assume for the sake of contradiction that LD ∈ RE. This
means that there is a recognizer R for LD.

Now, focus on what happens if we run recognizer R on its own
string encoding (that is, running R on ⟨R⟩). Since R is a recognizer
for LD, we see that

R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ LD.

By definition of LD, we know that

⟨R⟩ ∈ LD if and only if R does not accept ⟨R⟩.

Combining the two above statements tells us that

 R accepts ⟨R⟩ if and only if R does not accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our
assumption was wrong, and so LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means

● On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

● There's no automatic way to do math. There are
true statements that we can't prove.

● That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created

equal!

● The Classes P and NP
● Two fundamental and important complexity

classes.

● The P NP Question≟
● A literal million-dollar question!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

