
  

Unsolvable Problems
Part Two



  

Outline for Today

● More on Undecidability
● Even more problems we can’t solve.

● A Different Perspective on RE
● What exactly does “recognizability” mean?

● Verifiers
● A new approach to problem-solving.

● Beyond RE
● A beautiful example of an impossible problem.



  

Recap from Last Time



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns 
true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

trickster willAccept

trickster(input) returns true
 

↔
 

willAccept(me, input) returns true
 

↔
 

trickster(input) returns false



  

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider D for ATM.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider 
this function trickster:

        bool trickster(string input) {
            string me = /* source code of trickster */;
            return !willAccept(me, input);
        } 

Since willAccept decides ATM and me holds the source of trickster, we know that

willAccept(me, input) returns true  if and only if  trickster(input) returns true.

Given how trickster is written, we see that

willAccept(me, input) returns true  if and only if  trickster(input) returns false.

This means that

trickster(input) returns true  if and only if  trickster(input) returns false.

This is impossible. We’ve reached a contradiction, so our assumption was wrong 
and ATM is undecidable. ■
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New Stuff!



  

More Impossibility Results



  

The Halting Problem

● The most famous undecidable problem is the halting 
problem, which asks:

Given a TM M and a string w,
will M halt when run on w? 

● As a formal language, this problem would be 
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w } 
● Theorem: HALT is recognizable, but undecidable.

● There’s a recognizer for HALT.
● There is no decider for HALT.



  

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a 

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

bool willHalt(string TM, string w) {
   set up a simulation of M running on w;

while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}
}



  

Theorem: The halting problem is 
undecidable.



  

A Decider for HALT

● Let’s suppose that, somehow, we managed to build a decider 
for HALT = { ⟨M, w⟩ | M is a TM that halts on w }. 

● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method

bool willHalt(string function, string input);

that takes as input a function function and a string input, then
● returns true if function(input) returns anything (halts), and
● returns false if function(input) never returns anything (loops).

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.



  

bool willHalt(string function, string input) {
   // Returns true if function(input) halts.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

 

   if (willHalt(me, input)) {
       while (true) {
           // Do nothing
       }
   } else {
       return true;
   }
}

trickster willHalt

trickster(input) halts
 

↔
 

willHalt(me, input) returns true
 

↔
 

trickster(input) loops



  

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there is a decider D for
HALT. We can represent D as a function

bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this 
function trickster:

        bool trickster(string input) {
            string me = /* source code of trickster */;
            if (willHalt(me, input)) {
                while (true) { }
            } else {
                return true;
            }
        } 

Since willHalt decides HALT and me holds the source of trickster, we know that

willHalt(me, input) returns true    if and only if    trickster(input) halts.

Given how trickster is written, we see that

willHalt(me, input) returns true    if and only if    trickster(input) loops.

This means that

trickster(input) halts    if and only if    trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong 
and HALT is undecidable. ■
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So What?

● These problems might not seem all that 
exciting, so who cares if we can't solve 
them?

● Turns out, this same line of reasoning 
can be used to show that some very 
important problems are impossible to 
solve.



  

Analogy Time!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!



  

Fact: Almost all “regulatory problems” 
about computer programs are undecidable. 

That is, almost all problems of the form 
“does this program have [behavioral 

property X]” are undecidable.

This can be formalized through a result 
called Rice’s Theorem; take CS154 for 

details!



  

Secure Voting

● Suppose that you want to make a voting 
machine for use in an election between two 
parties.

● Let Σ = {r, d}. A string w ∈ Σ* corresponds 
to a series of votes for the candidates.

● Example: rrdddrd means “two people voted 
for r, then three people voted for d, then 
one more person voted for r, then one more 
person voted for d.”



  

Secure Voting

● A voting machine is a program that takes 
as input a string of r's and d's, then 
reports whether person r won the 
election.

● Question: Given a TM that someone 
claims is a secure voting machine, could 
we automatically check whether it 
actually is a secure voting machine?



  

bool bee(string input) {
   int numRs = countRsIn(input);
   int numDs = countDsIn(input);

   return numRs > numDs;
}

bool topaz(string input) {
   return input[0] == 'r';
}

bool anna(string input) {
   int numRs = countRsIn(input);
   int numDs = countDsIn(input);

   if (numRs = numDs) {
       return false;
   } else if (numRs < numDs) {
       return false;
   } else {
       return true;
   }
}

bool green(string input) { 

   int n = input.length();
   while (n > 1) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
 

   int numRs = countRsIn(input);
   int numDs = countDsIn(input);
 

   return numRs > numDs;
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
M accepts w ∈ {r, d}* if and only if w has more r’s than d’s.



  

Secure Voting

● A voting machine is a program that takes 
as input a string of r's and d's, then 
reports whether person r won the 
election.

● Question: Given a TM that someone 
claims is a secure voting machine, could 
we automatically check whether it 
actually is a secure voting machine?



  

A Decider for Secure Voting

● Let’s suppose that, somehow, we managed to build a 
decider for the secure voting problem.

● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method

bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that 
function is a secure voting machine.

Decider
for secure

voting

M

Yes, M is a secure voting
machine.

No, M is not a secure 
voting machine.



  

bool isSecureVotingMachine(string function) {
   // Returns whether function accepts only
   // strings with more r’s than d’s.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

 

   if (isSecureVotingMachine(me)) {
       return countRsIn(input) <= countDsIn(input);
   } else {
       return countRsIn(input) > countDsIn(input);
   }
}

trickster isSecureVotingMachine

trickster is a secure voting machine
 

↔
 

isSecureVotingMachine(me) returns true
 

↔
 

trickster isn’t a secure voting machine.



  

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a 
secure voting machine (that is, whether it accepts precisely the strings with more r’s than 
d’s). Given this, consider this function trickster:

        bool trickster(string input) {
            string me = /* source code of trickster */;
            if (isSecureVotingMachine(me)) {
                return /* if input has at most as many r’s as d’s */;
            } else {
                return /* if input has more r’s than d’s */;
            }
        } 

Since isSecureVotingMachine decides the secure voting problem and me holds the source of 
trickster, we know that

isSecureVotingMachine(me) returns true  if and only if  trickster is a secure voting machine.

Given how trickster is written, we see that

isSecureVotingMachine(me) returns true  if and only if  trickster isn’t a secure voting machine

This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure 
voting problem is undecidable. ■



  

Interpreting this Result

● The previous argument tells us that there is no 
general algorithm that we can follow to determine 
whether a program is a secure voting machine. In 
other words, any general algorithm to check voting 
machines will always be wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases. 

(This is often done in practice.)
● Fall back on human verification of voting machines. (We do 

that too.)
● Carry a healthy degree of skepticism about electronic 

voting machines. (Then again, did we even need the 
theoretical result for this?)



  

Time-Out for Announcements!



  

0 – 42 43 – 45 46 – 48 49 – 51 52 – 54 55 – 57 58 – 60 61 – 63

Problem Set Seven Graded

75th Percentile: 62 / 63 (98%)
50th Percentile: 60 / 63 (95%)
25th Percentile: 55 / 63 (87%)



  

Problem Set Nine

● Problem Set Eight was due today at 
2:30PM.

● Problem Set Nine goes out today. It’s due 
the Friday after break at 2:30PM.
● It’s designed to take the usual amount of 

time, but you’ve got the full two weeks for it.
● Play around with the limits of R and RE 

languages – the upper extent of 
computation!

● See how everything fits together!



  

Thanksgiving Break Logistics

● We will not be holding our regular office 
hours over the break.

● We will be periodically checking EdStem, 
but not at the level we usually do.

● Once we’re back from break, we’ll 
resume normal our office hours and 
EdStem rotation.



  

The Last Two Guides

● We’ve posted two final guides to the course 
website:
● The Guide to Self-Reference, which talks about 

proofs of undecidability via self-reference.
● The Guide to the Lava Diagram, which 

provides an intuition for how different classes of 
languages relate to one another.

● Give these a read – there’s a ton of useful 
information in there!



  

Preparing for the Final Exam

● We’ve posted a gigantic compendium of 
CS103 practice problems on the course 
website.

● You can search for problems based on 
the topics they cover, whether solutions 
are available, whether they’re ones we 
particularly like, and whether they have 
solutions.



  

Your Questions



  

“Tips for dealing with burnout?”

Everyone is different, so I can’t claim to have 
universal advice. From experience, one of the best 
tricks is to set boundaries and hold yourself to 
them. Forgive yourself, and make sure you make 
time in your day to decompress and do something 

that replenishes you.



  

“What are you thankful for?”

A great 
many things. 

😃



  

“Tell us a fun sibling story?”

Sure!



  

Back to CS103!



  

Beyond R and RE



  

Beyond R and RE

● We've now seen how to use self-reference 
as a tool for showing undecidability 
(finding languages not in R).

● We still have not broken out of RE yet, 
though.

● To do so, we will need to build up a 
better intuition for the class RE.



  

What exactly is the class RE?



  

RE, Formally

● Recall that the class RE is the class of all 
recognizable languages:

RE = { L | there is a TM M that recognizes L }
● Since R ≠ RE, there is no general way to 

“solve” problems in the class RE, if by “solve” 
you mean “make a computer program that can 
always tell you the correct answer.”

● So what exactly are the sorts of languages in 
RE?



  

Does this graph contain four
mutually adjacent nodes?



  

Key Intuition:

A language L is in RE if, for any string w, if 
you are convinced that w ∈ L, there is some 
way you could prove that to someone else.



  

Verification

Does this graph have a Hamiltonian 
path (a path that passes through 

every node exactly once?)

1

2

5

4

6

3



  

Verification

Does the hailstone sequence 
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.



  

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)



  

Verification

Does the hailstone sequence 
terminate for this number?

11

Try running five steps of the Hailstone sequence.



  

Verifiers

● A verifier for a language L is a TM V 
with the following two properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check an answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● If V accepts ⟨w, c⟩, we're guaranteed w ∈ L.

● If V rejects ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that the certificate c is existentially 
quantified. Any string w ∈ L must have at least 
one c that causes V to accept, and possibly 
more.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that V isn’t a decider for L and isn’t a 
recognizer for L.

● The job of V is just to check certificates, not to 
decide membership in L.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Although this formal definition works with a 
string c, remember that c can be an encoding of 
some other object.

● In practice, c will likely just be “some other 
auxiliary data that helps you out.”



  

Some Verifiers

● Let L be the following language:

    L = { ⟨G⟩ | G is a graph and G has a
                      Hamiltonian path }

● (A Hamiltonian path is one that passes through all 
nodes in the graph G.)

● Let's see how to build a verifier for L. Our verifier will 
take as input
● a graph G, and
● a certificate c.

● The certificate c should be some evidence that 
suggests that G has a Hamiltonian path.

● What information could we put into the certificate?



  

Verification

Is there a simple path that goes 
through every node exactly once?

1

2

5

4

6

3



  

Some Verifiers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

  

 

 

● Do you see why ⟨G⟩ ∈ L if and only if there is a c where 
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (int i = 0; i + 1 < c.size(); i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}



  

A Very Nifty Verifier

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!



  

A Very Nifty Verifier

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● We know that UTM is a recognizer for ATM. It is 
also a verifier for ATM?

● No, for two reasons:

● UTM doesn’t always halt. (Do you see why?)

● UTM takes as input a TM M and a string w. A 
verifier also needs a certificate.



  

A Very Nifty Verifier

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● A verifier for ATM would take as input

● A TM M,
● a string w, and
● a certificate c.

● The certificate c should be some evidence that 
suggests that M accepts w.

● What could our certificate be?



  

Some Verifiers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

  

 

● Do you see why M accepts w if and only if there is 
a c such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}



  

What languages are verifiable?



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE



  

Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 

 

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as 
certificates, so it will eventually find c (or some other 
working certificate), see V accept ⟨w, c⟩, then return 
true. Conversely, if isInL(w) returns true, then there 
was some string c such that V accepted ⟨w, c⟩, so we 
see that w ∈ L. ■

bool isInL(string w) {
   for (each string c) {
      if (V accepts w, c ) ⟨ ⟩ return true;
   }
}



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for 

the language L, show how to construct a verifier 
V for L.



  

We have a recognizer for a language.
We want to turn it into a verifier.
Where did we see this before?



  

Some Verifiers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

  

 

Do you see why M accepts w iff there is some c 
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

Observation: This 
trick of enforcing a 

step count limits how 
long M can run for!



  

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Let L be a RE language and let M be a recognizer 

for it. Consider this function:

  

 

 

 

Note that checkIsInL always halts, since each step takes only finite 
time to complete. Next, notice that if there is a c where 
checkIsInL(w, c) returns true, then M accepted w after running for 
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after 
some number of steps (call that number c). Then checkIsInL(w, c) 
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    TM M = /* hardcoded version of a recognizer for L */;
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }



  

RE and Proofs

● Verifiers and recognizers give two different 
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!



  

Finding Non-RE Languages



  

Finding Non-RE Languages

● Right now, we know that non-RE 
languages exist, but we have no idea 
what they look like.

● How might we find one?



  

Recognizers and Recognizability

● Recall: We say that M is a recognizer for L if 
the following is true:

∀w ∈ Σ*. (w ∈ L    ↔    M accepts w).
● This above description applies to all strings, 

including strings that, by pure coincidence, 
happen to be encodings of TMs.

● What happens if we list off all Turing 
machines, looking at how those TMs behave 
given other TMs as input?



  

All Turing machines, 
listed in some order.

M₁

M₂

M₀

M₃

M₄

M₅

…



  

All descriptions 
of TMs, listed in 
the same order.

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

Flip all “accept” 
to “no” and 
vice-versa

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has 
this behavior!

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

“The language of all
TMs that do not accept

their descriptions.”

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

{ ⟨M⟩ | M is a TM that 
does not accept ⟨M⟩ }

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be 
different from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.



  

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: Assume for the sake of contradiction that LD ∈ RE. This 
means that there is a recognizer R for LD.

Now, focus on what happens if we run recognizer R on its own 
string encoding (that is, running R on ⟨R⟩). Since R is a recognizer 
for LD, we see that

R accepts ⟨R⟩        if and only if        ⟨R⟩ ∈ LD.

By definition of LD, we know that

⟨R⟩ ∈ LD        if and only if        R does not accept ⟨R⟩.

Combining the two above statements tells us that

    R accepts ⟨R⟩   if and only if    R does not accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our 
assumption was wrong, and so LD ∉ RE. ■



  

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT



  

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means

● On a more philosophical note, you could interpret 
the previous result in the following way:

There are inherent limits about what 
mathematics can teach us.

● There's no automatic way to do math. There are 
true statements that we can't prove.

● That doesn't mean that mathematics is worthless. 
It just means that we need to temper our 
expectations about it.



  

Where We Stand

● We've just done a crazy, whirlwind tour of computability 
theory:
● The Church-Turing thesis tells us that TMs give us a 

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not 

just a stroke of luck. The existence of the universal TM ensures 
that such computers must exist.

● Self-reference is an inherent consequence of computational 
power.

● Undecidable problems exist partially as a consequence of the 
above and indicate that there are statements whose truth can't 
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered 
via diagonalization. They imply there are limits to mathematical 
proof.



  

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer. 

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.



  

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created 

equal!

● The Classes P and NP
● Two fundamental and important complexity 

classes.

● The P  NP Question≟
● A literal million-dollar question!
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