

Complexity Theory
Part One

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem

● Consider the following problem:

Given two regular expressions R₁ and R₂,
determine whether R₁ and R₂ have the same

language.
● This problem is indeed decidable.

● We autograded your regular expressions in Problem
Set Seven. The algorithm we used is 100% accurate.

● Theorem: There is no algorithm for solving this
problem whose runtime is O(2m+n), where m and
n are the lengths of the input regular
expressions.

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

● In the remainder of this course, we will
explore this question in more detail.

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

 All Languages

RERegular
Languages CFLs R

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● We have a program written in your Favorite Programming
Language that’s a decider for some problem.

● The program is correct in the sense that it always produces
the right output for any given input.

● How might we measure the “complexity” of that solution?
● The number of lines of code in the program.
● How deeply-nested the loops or recursion in the program are.
● How much time it takes for the program to solve the problem.
● How much memory it takes for the program to solve the problem.
● How much power it takes for the program to solve the problem.
● How much network communication it takes for the program to

solve the problem.
● …

Measuring Complexity

We have a program written in your Favorite Programming
Language that’s a decider for some problem.

The program is correct in the sense that it always produces
the right output for any given input.

How might we measure the “complexity” of that solution?

The number of lines of code in the program.

How deeply-nested the loops or recursion in the program are.
● How much time it takes for the program to solve the problem.

How much memory it takes for the program to solve the problem.

How much power it takes for the program to solve the problem.

How much network communication it takes for the program to
solve the problem.

…

We’re going to focus on this
measure of “complexity,” but that
doesn’t mean these other ones

aren’t interesting! There’s tons of
research on them.

What is an efficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but finite space of
possible options.

● Searching this space might take a
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally
fine.

● From a complexity perspective, this may be
totally unacceptable.

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Longest Increasing Subsequences

● One possible algorithm: try all subsequences,
find the longest one that's increasing, and return
that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to find the longest increasing
subsequence will take time O(n · 2n).

● Fact: the age of the universe is about 4.3 × 1026
nanoseconds. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't
terminate if you give it an input of size 100 or
more.

A Different Approach

Patience Sorting

4 3 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Place each number on top of a pile.

Put each number on top of the first pile
whose top value is larger than it. (If you

can’t, make a new pile.)

Then, add a link to the top number in the
previous pile.

Patience Sorting

34 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Longest Increasing Subsequences

● Theorem: There is an algorithm that can find the
longest increasing subsequence of an array in time
O(n²).
● It’s the previous patience sorting algorithm, with some

clever implementation tricks.
● This algorithm works by exploiting particular aspects

of how longest increasing subsequences are
constructed. It's not immediately obvious that it
works correctly.

● CS161-Style Exercise 1: Prove that this procedure
always works!

● CS161-Style Exercise 2: Show that you can
implement this algorithm in time O(n log n).

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from F to A in

this graph.

Shortest Paths

● It is possible to find the shortest path in a
graph by listing off all sequences of
nodes in the graph in ascending order of
length and finding the first that's a path.

● This takes time O(n · n!) in an n-node
graph.

● For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

● Theorem: It's possible to find the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-first search!
● The algorithm is a bit nuanced. It uses

some specific properties of shortest
paths and the proof of correctness is
nontrivial.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).

Defining Efficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures efficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

efficient algorithm, then another, gives an efficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis,
a language is in P if it can be decided
efficiently.

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the CYK

algorithm or Earley's algorithm.)
● And a ton of other problems are in P as

well.
● Curious? Take CS161!

 Undecidable Languages

Regular
Languages CFLs RP

What can't you do in polynomial time?

start

end

How many paths
are there from
the start node
to the end

node?

, , ,

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.
● This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifiers – Again

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku problem
have a solution?

Verifiers – Again

Is there an ascending subsequence of
length at least 5?

34 11 9 7 13 5 6 1 12 2 8 0 10

Verifiers – Again

Is there a path that goes through
every node exactly once?

1

2

5

4

6

3

Verifiers

● Recall that a verifier for L is a TM V
such that
● V halts on all inputs.
● w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩.

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a
TM V such that
● V halts on all inputs.
● w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “efficiently” (its runtime is O(|w|k) for

some k ∈ ℕ).
● All strings in L have “short” certificates

(their lengths are O(|w|r) for some r ∈ ℕ).

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial
time) contains all problems that can be verified in
polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifier for L }

● The name NP comes from another way of characterizing
NP. If you introduce nondeterministic Turing machines and
appropriately define “polynomial time,” then NP is the set
of problems that an NTM can solve in polynomial time.

● Useful fact: NP ⊊ R. Come talk to me after class if you’re
curious why!

 P = { L | there is a polynomial-time
 decider for L }

 NP = { L | there is a polynomial-time
verifier for L }

 R = { L | there is a polynomial-time
 decider for L }

 RE = { L | there is a polynomial-time
verifier for L }

We know that R ≠ RE.

So does that mean P ≠ NP?

Time-Out for Announcements!

Please evaluate this course in Axess.
Your comments really make a difference.

Problem Sets

● Problem Set 8 solutions are now up on
the course website.
● Your TAs are working on grading them and

will get them back as soon as they’re ready.
● Problem Set 9 is due this Friday at

2:30PM.
● As always, come talk to us if you have any

questions!

Final Exam Logistics

● Our final exam is a take-home exam that goes out
this Friday at 2:30PM and comes due next
Thursday (December 9th) at 3:30PM.

● Like the midterms, you can work on the exam for
any amount of time in that period.

● Like the midterms, the exam is open-book and
open-note, but you cannot communicate with
other humans or solicit solutions.

● Unlike the midterms, this exam is designed to take
about six hours to complete and covers all topics
from the course (PS1 – PS9, plus L00 – L27).

Preparing for the Final

● We’ve posted a gigantic list of cumulative
review problems on the course website that
you can use to get more practice with
whatever topics you’re interested in.

● Our recommendation: Look back over the
exams and problem sets and redo any
problems that you didn’t really get the first
time around.

● Keep the TAs in the loop: stop by office hours
to have them review your answers and offer
feedback.

Your Questions

“What do you think I should be doing if I
want to teach CS at a high school or

university after graduation?”

Get lots of teaching experience! That could be through section leading,
by TAing courses in other departments, through tutoring, etc.

As an FYI, many university teaching jobs require an MS degree as a
minimum. Some require a PhD.

You can also stay involved in teaching without doing it full-time. The
TEALS program pairs software engineers with high-school teachers. The
Ada Academy pairs software engineers with women interested in joining

the tech sector.

“Do you have a favorite national park?”

That’s a hard one. Yosemite is famous
for a very, very good reason. But my
favorite is probably Lassen Volcanic

National Park up in northern California.
It’s got a mix of hydrothermal areas,
active volcanoes you can climb, and

beautiful scenery. (Though it did suffer a
bunch of fire damage this year – alas.)

Back to CS103!

And now...

The

Biggest Question

in

Theoretical Computer Science

P ≟ NP

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifier for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifier for L }

P ⊆ NP

Polynomial-Time
Verifier for L

yes!

no!

input string (w)

certificate (c)
(ignored)

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

P ≟ NP

● The P ≟ NP question is the most important question
in theoretical computer science.

● With the verifier definition of NP, one way of
phrasing this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be efficiently verifiable,
but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that
multiple gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems

could be solved efficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely difficult.
● In the past 49 years:

● Not a single correct proof either way has been
found.

● Many types of proofs have been shown to be
insufficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● https://www.cs.umd.edu/~gasarch/papers/poll.pdf

https://www.cs.umd.edu/~gasarch/papers/poll.pdf

The Million-Dollar Question

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves

or disproves P = NP.

“My hunch is that [P ≟ NP] will be solved
by a young researcher who is not

encumbered by too much conventional
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who first popularized the P NP≟ problem.)

What do we know about P ≟ NP?

Adapting our Techniques

We know that R ≠ RE.

So does that mean P ≠ NP?

A Problem

● The R and RE languages correspond to
problems that can be decided and verified,
period, without any time bounds.

● To reason about what's in R and what's in
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source

code.
● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

Next Time

● Reducibility
● A technique for connecting problems to one

another.
● NP-Completeness

● What are the hardest problems in NP?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

