
  

Complexity Theory
Part One



  

It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem

● Consider the following problem:

Given two regular expressions R₁ and R₂, 
determine whether R₁ and R₂ have the same 

language.
● This problem is indeed decidable.

● We autograded your regular expressions in Problem 
Set Seven. The algorithm we used is 100% accurate.

● Theorem: There is no algorithm for solving this 
problem whose runtime is O(2m+n), where m and 
n are the lengths of the input regular 
expressions.



  

The Limits of Decidability

● The fact that a problem is decidable does not 
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

● In the remainder of this course, we will 
explore this question in more detail.



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer. 

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?



  

Measuring Complexity

● We have a program written in your Favorite Programming 
Language that’s a decider for some problem.

● The program is correct in the sense that it always produces 
the right output for any given input.

● How might we measure the “complexity” of that solution?
● The number of lines of code in the program.
● How deeply-nested the loops or recursion in the program are.
● How much time it takes for the program to solve the problem.
● How much memory it takes for the program to solve the problem.
● How much power it takes for the program to solve the problem.
● How much network communication it takes for the program to 

solve the problem.
● …



  

Measuring Complexity

We have a program written in your Favorite Programming 
Language that’s a decider for some problem.

The program is correct in the sense that it always produces 
the right output for any given input.

How might we measure the “complexity” of that solution?

The number of lines of code in the program.
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How much network communication it takes for the program to 
solve the problem.

…

We’re going to focus on this 
measure of “complexity,” but that 
doesn’t mean these other ones 

aren’t interesting! There’s tons of 
research on them.



  

What is an efficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but finite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally 
fine.

● From a complexity perspective, this may be 
totally unacceptable.



  

A Sample Problem

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10



  

Longest Increasing Subsequences

● One possible algorithm: try all subsequences, 
find the longest one that's increasing, and return 
that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to find the longest increasing 
subsequence will take time O(n · 2n).

● Fact: the age of the universe is about 4.3 × 1026 
nanoseconds. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't 
terminate if you give it an input of size 100 or 
more.



  

A Different Approach



  

Patience Sorting
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Place each number on top of a pile.
 

Put each number on top of the first pile 
whose top value is larger than it. (If you 

can’t, make a new pile.)
 

Then, add a link to the top number in the 
previous pile.



  

Patience Sorting
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Trace backwards from the top of the last 
pile. The numbers you visit form one of the 
longest increasing subsequences of your 

original sequence.



  

Longest Increasing Subsequences

● Theorem: There is an algorithm that can find the 
longest increasing subsequence of an array in time 
O(n²).
● It’s the previous patience sorting algorithm, with some 

clever implementation tricks.
● This algorithm works by exploiting particular aspects 

of how longest increasing subsequences are 
constructed. It's not immediately obvious that it 
works correctly.

● CS161-Style Exercise 1: Prove that this procedure 
always works!

● CS161-Style Exercise 2: Show that you can 
implement this algorithm in time O(n log n).



  

Another Problem

E

A

F

C

D
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To   

From
   

Goal: Determine the 
length of the shortest 
path from F to A in 

this graph.



  

Shortest Paths

● It is possible to find the shortest path in a 
graph by listing off all sequences of 
nodes in the graph in ascending order of 
length and finding the first that's a path.

● This takes time O(n · n!) in an n-node 
graph.

● For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



  

Shortest Paths

● Theorem: It's possible to find the 
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-first search!
● The algorithm is a bit nuanced. It uses 

some specific properties of shortest 
paths and the proof of correctness is 
nontrivial.



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defining Efficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

Why Polynomials?

● Polynomial time somewhat captures efficient 
computation, but has a few edge cases.

● However, polynomials have very nice mathematical 
properties:
● The sum of two polynomials is a polynomial. (Running one 

efficient algorithm, then another, gives an efficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one efficient algorithm a “reasonable” number of times 
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one efficient algorithm as the input to 
another efficient algorithm gives an efficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, 
a language is in P if it can be decided 
efficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the CYK 

algorithm or Earley's algorithm.)
● And a ton of other problems are in P as 

well.
● Curious? Take CS161!
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What can't you do in polynomial time?



  

start

end

How many paths 
are there from 
the start node 
to the end 

node?



  

, , ,

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.
● This brings us to our next topic...



  

What if you need to search a large 
space for a single object?



  

Verifiers – Again
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Does this Sudoku problem 
have a solution?



  

Verifiers – Again

Is there an ascending subsequence of 
length at least 5?

34 11 9 7 13 5 6 1 12 2 8 0 10



  

Verifiers – Again

Is there a path that goes through 
every node exactly once?
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Verifiers

● Recall that a verifier for L is a TM V 
such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.



  

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “efficiently” (its runtime is O(|w|k) for 

some k ∈ ℕ).
● All strings in L have “short” certificates 

(their lengths are O(|w|r) for some r ∈ ℕ).



  

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial 
time) contains all problems that can be verified in 
polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifier for L }

● The name NP comes from another way of characterizing 
NP. If you introduce nondeterministic Turing machines and 
appropriately define “polynomial time,” then NP is the set 
of problems that an NTM can solve in polynomial time.

● Useful fact: NP  ⊊ R. Come talk to me after class if you’re 
curious why!



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifier for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifier for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

Time-Out for Announcements!



  

Please evaluate this course in Axess.
Your comments really make a difference.



  

Problem Sets

● Problem Set 8 solutions are now up on 
the course website.
● Your TAs are working on grading them and 

will get them back as soon as they’re ready.
● Problem Set 9 is due this Friday at 

2:30PM.
● As always, come talk to us if you have any 

questions!



  

Final Exam Logistics

● Our final exam is a take-home exam that goes out 
this Friday at 2:30PM and comes due next 
Thursday (December 9th) at 3:30PM.

● Like the midterms, you can work on the exam for 
any amount of time in that period.

● Like the midterms, the exam is open-book and 
open-note, but you cannot communicate with 
other humans or solicit solutions.

● Unlike the midterms, this exam is designed to take 
about six hours to complete and covers all topics 
from the course (PS1 – PS9, plus L00 – L27).



  

Preparing for the Final

● We’ve posted a gigantic list of cumulative 
review problems on the course website that 
you can use to get more practice with 
whatever topics you’re interested in.

● Our recommendation: Look back over the 
exams and problem sets and redo any 
problems that you didn’t really get the first 
time around.

● Keep the TAs in the loop: stop by office hours 
to have them review your answers and offer 
feedback.



  

Your Questions



  

“What do you think I should be doing if I 
want to teach CS at a high school or 

university after graduation?”

Get lots of teaching experience! That could be through section leading, 
by TAing courses in other departments, through tutoring, etc.

As an FYI, many university teaching jobs require an MS degree as a 
minimum. Some require a PhD.

You can also stay involved in teaching without doing it full-time. The 
TEALS program pairs software engineers with high-school teachers. The 
Ada Academy pairs software engineers with women interested in joining 

the tech sector.



  

“Do you have a favorite national park?”

That’s a hard one. Yosemite is famous 
for a very, very good reason. But my 
favorite is probably Lassen Volcanic 

National Park up in northern California. 
It’s got a mix of hydrothermal areas, 
active volcanoes you can climb, and 

beautiful scenery. (Though it did suffer a 
bunch of fire damage this year – alas.)



  

Back to CS103!



  

And now...



  

The
 

Biggest Question
 

in
 

Theoretical Computer Science



  

P  ≟ NP



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }
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     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

P ⊆ NP

Polynomial-Time
Verifier for L

yes!

no!

input string (w)     

certificate (c)  
(ignored)



  

P NP

Which Picture is Correct?



  

P NP

Which Picture is Correct?



  

P  ≟ NP

● The P ≟ NP question is the most important question 
in theoretical computer science.

● With the verifier definition of NP, one way of 
phrasing this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be efficiently verifiable, 
but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that 
multiple gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems 

could be solved efficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely difficult.
● In the past 49 years:

● Not a single correct proof either way has been 
found.

● Many types of proofs have been shown to be 
insufficiently powerful to determine whether 
P   ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● https://www.cs.umd.edu/~gasarch/papers/poll.pdf

https://www.cs.umd.edu/~gasarch/papers/poll.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has offered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

“My hunch is that [P ≟ NP] will be solved 
by a young researcher who is not 

encumbered by too much conventional 
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who first popularized the P  NP≟  problem.)



  

What do we know about P  ≟ NP?



  

Adapting our Techniques



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem

● The R and RE languages correspond to 
problems that can be decided and verified, 
period, without any time bounds.

● To reason about what's in R and what's in 
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source 

code.
● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

Next Time

● Reducibility
● A technique for connecting problems to one 

another.
● NP-Completeness

● What are the hardest problems in NP?
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