

Complexity Theory
Part Two

Recap from Last Time

The Complexity Class P

● The complexity class P (polynomial
time) is defined as

 P = { L | There is a polynomial-time
 decider for L }

● Intuitively, P contains all decision
problems that can be solved efficiently.

● This is like class R, except with
“efficiently” tacked onto the end.

The Complexity Class NP

● The complexity class NP (nondeterministic
polynomial time) contains all problems that
can be verified in polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifier for L }

● Intuitively, NP is the set of problems where
“yes” answers can be checked efficiently.

● This is like the class RE, but with “efficiently”
tacked on to the definition.

The Biggest Unsolved Problem in
Theoretical Computer Science:

P ≟ NP

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

New Stuff!

A Challenge

 NP PREG

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?

Reducibility

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● He’s the guy from last time with the quote

about “better than decidable.”
● Using this fact, what other problems can

we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching efficiently, we can solve domino

tiling efficiently.

Another Example

Reachability

● Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

● This problem can be solved in polynomial
time (use DFS or BFS).

Converter Conundrums

● Suppose that you want to plug your laptop into a
projector.

● Your laptop only has a VGA output, but the
projector needs HDMI input.

● You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the
projector?

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

In Pseudocode

bool canPlugIn(vector<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
 VGA, HDMI);

}

Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than

determining reachability in a graph, since
if we can determine reachability in a graph,
we can find a way to plug a computer into a

projector.

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that translate
* runs in polynomial time.

bool solveProblemA(string input) {
 return solveProblemB(translate(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

This ≤ₚ relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?

Time-Out for Announcements!

Please evaluate this course on Axess.

Your feedback makes a difference.

Final Exam Logistics

● Our final exam is a take-home exam that goes out
this Friday at 2:30PM and comes due next
Thursday (December 9th) at 3:30PM.

● Like the midterms, you can work on the exam for
any amount of time in that period.

● Like the midterms, the exam is open-book and
open-note, but you cannot communicate with
other humans or solicit solutions.

● Unlike the midterms, this exam is designed to take
about six hours to complete and covers all topics
from the course (PS1 – PS9, plus L00 – L27).

Preparing for the Final

● We’ve posted a gigantic list of cumulative
review problems on the course website that
you can use to get more practice with
whatever topics you’re interested in.

● Our recommendation: Look back over the
exams and problem sets and redo any
problems that you didn’t really get the first
time around.

● Keep the TAs in the loop: stop by office hours
to have them review your answers and offer
feedback.

Back to CS103!

An Analogy: Running Really Fast

For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

We say that person P is CS103-fast if
∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103-fastCS103-complete

Usain
Bolt

Paula
Radcliffe

Fastest
runner in

CS103

Tied for
fastest in

CS103

CS103

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest

problem in
NP

Tied for
hardest in

NP

P

Intuition: The NP-complete problems are
the hardest problems in NP.

If we can determine how hard those
problems are, it would tell us a lot about

the P ≟ NP question.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest

problems in NP aren’t actually that
hard. We can solve them in

polynomial time. So that means we
can solve all problems in NP in

polynomial time.

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest
problems in NP are so hard that

they can’t be solved in polynomial
time. So the hardest problems in NP

aren’t in P, meaning P ≠ NP.

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

How do we even know NP-complete
problems exist in the first place?

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

SAT

● The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to
make a polynomial-time verifier for it. Key idea:
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a
polymomial-time verifier V for an arbitrary NP
language L, for any string w you can construct a
polynomially-sized formula φ(w) that says “there
is a certificate c where V accepts ⟨w, c⟩.” This
formula is satisfiable if and only if w ∈ L, so
deciding whether the formula is satisfiable
decides whether w is in L. ■-ish

Proof: Take CS154!

Why All This Matters

● Resolving P ≟ NP is equivalent to just
figuring out how hard SAT is.

SAT ∈ P ↔ P = NP
● We've turned a huge, abstract, theoretical

problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

● You can get a sense for how little we know
about algorithms and computation given
that we can't yet answer this question!

Why All This Matters

● You will almost certainly encounter NP-hard
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known
algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not
necessarily right, or have to work on really small
inputs.

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most

probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data (Bayesian network
inference problem)

● Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can receive
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible (Processor scheduling problem)

Coda: What if P ≟ NP is resolved?

Next Time

● Why All This Matters
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

