
  

Complexity Theory
Part Two



  

Recap from Last Time



  

The Complexity Class P

● The complexity class P (polynomial 
time) is defined as

     P = { L | There is a polynomial-time 
                   decider for L }

● Intuitively, P contains all decision 
problems that can be solved efficiently.

● This is like class R, except with 
“efficiently” tacked onto the end.



  

The Complexity Class NP

● The complexity class NP (nondeterministic 
polynomial time) contains all problems that 
can be verified in polynomial time.

● Formally:

      NP = { L | There is a polynomial-time 
                        verifier for L }

● Intuitively, NP is the set of problems where 
“yes” answers can be checked efficiently.

● This is like the class RE, but with “efficiently” 
tacked on to the definition.



  

The Biggest Unsolved Problem in
Theoretical Computer Science:

P  ≟ NP



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



New Stuff!



A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
difficulty, even if P = NP.

 

How can we rank the relative difficulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.
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Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A matching, but 
not a maximum 

matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.
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Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● He’s the guy from last time with the quote 

about “better than decidable.”
● Using this fact, what other problems can 

we solve?



  

Domino Tiling
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Domino Tiling



  

Domino Tiling



  

Solving Domino Tiling
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Solving Domino Tiling



  

Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching efficiently, we can solve domino 

tiling efficiently.



  

Another Example



  

Reachability

● Consider the following problem:

Given an directed graph G and nodes s 
and t in G, is there a path from s to t? 

● This problem can be solved in polynomial
time (use DFS or BFS).



  

Converter Conundrums

● Suppose that you want to plug your laptop into a 
projector.

● Your laptop only has a VGA output, but the 
projector needs HDMI input.

● You have a box of connectors that convert various 
types of input into various types of output (for 
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the 
projector?



  

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI
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Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



  

In Pseudocode

bool canPlugIn(vector<Plug> plugs) {

  return isReachable(plugsToGraph(plugs),
                     VGA, HDMI);

}



  

Intuition:

Finding a way to plug a computer into a 
projector can't be “harder” than 

determining reachability in a graph, since 
if we can determine reachability in a graph, 
we can find a way to plug a computer into a 

projector.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that translate
* runs in polynomial time.



bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.



  

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions
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Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP
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Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a difference.



  

Final Exam Logistics

● Our final exam is a take-home exam that goes out 
this Friday at 2:30PM and comes due next 
Thursday (December 9th) at 3:30PM.

● Like the midterms, you can work on the exam for 
any amount of time in that period.

● Like the midterms, the exam is open-book and 
open-note, but you cannot communicate with 
other humans or solicit solutions.

● Unlike the midterms, this exam is designed to take 
about six hours to complete and covers all topics 
from the course (PS1 – PS9, plus L00 – L27).



  

Preparing for the Final

● We’ve posted a gigantic list of cumulative 
review problems on the course website that 
you can use to get more practice with 
whatever topics you’re interested in.

● Our recommendation: Look back over the 
exams and problem sets and redo any 
problems that you didn’t really get the first 
time around.

● Keep the TAs in the loop: stop by office hours 
to have them review your answers and offer 
feedback.



  

Back to CS103!



  

An Analogy: Running Really Fast



  

For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

 

We say that person P is CS103-fast if
∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)
 

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103-fastCS103-complete

Usain 
Bolt

Paula
Radcliffe

Fastest 
runner in 

CS103

Tied for 
fastest in 

CS103

CS103



  

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)
 

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)
 

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest 

problem in 
NP

Tied for 
hardest in 

NP

P



  

Intuition: The NP-complete problems are 
the hardest problems in NP.

 

If we can determine how hard those 
problems are, it would tell us a lot about 

the P  ≟ NP question.



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest 

problems in NP aren’t actually that 
hard. We can solve them in 

polynomial time. So that means we 
can solve all problems in NP in 

polynomial time.



  

The Tantalizing Truth
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The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the first place?



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

SAT

● The boolean satisfiability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL       
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifier for it. Key idea: 
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a 
polymomial-time verifier V for an arbitrary NP 
language L, for any string w you can construct a 
polynomially-sized formula φ(w) that says “there 
is a certificate c where V accepts ⟨w, c⟩.” This 
formula is satisfiable if and only if w ∈ L, so 
deciding whether the formula is satisfiable 
decides whether w is in L. ■-ish

Proof: Take CS154!



  

Why All This Matters

● Resolving P   ≟ NP is equivalent to just 
figuring out how hard SAT is.

SAT ∈ P    ↔    P = NP
● We've turned a huge, abstract, theoretical 

problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given 
that we can't yet answer this question!



  

Why All This Matters

● You will almost certainly encounter NP-hard 
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known 
algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who can receive 
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the 
optimal way to assign those tasks so that they complete as soon as 
possible (Processor scheduling problem)



  

Coda: What if P  ≟ NP is resolved?



  

Next Time

● Why All This Matters
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!
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