The Big Picture

Announcements

 Problem Set 9 was due thirty minutes ago. Solutions are
available on the course website.

Congratulations - you're done
with CS103 problem sets!

e Score distribution for PS8:

75% Percentile: 59/60 (98%)
50t Percentile: 57/60 (95%)
25% Percentile: 53/60 (88%)

0-36 37 -39 40 - 42 43 - 45 46 - 48 49 - 51 52 - b4 55 - 57 58 - 60

A Fun Historical Note

* The results you've seen presented in CS103
were not discovered in the order you may have
expected.

* For example:

- Regular languages were developed after Turing
machines.

- Cantor had worked out different orders of infinity
before the U and N symbols were invented.

* Check out the “Timeline of CS103 Results” on
the course website for more information!

Please evaluate this course on Axess.
Your feedback really makes a difference.

Final Exam Logistics

e The final exam is now available online.

It’s due Thursday, December 9%, at
3:30PM.

* Best of luck on the exam - you’ve got
this!

Outline for Today

 The Big Picture

- Where have we been? Why did it all matter?
- Where to Go from Here

- What’s next in CS theory?
 Your Questions

- What do you want to know?
 Final Thoughts!

The Big Picture

Take a minute to reflect on your journey.

Set Theory
Power Sets
Cantor’s Theorem
Direct Proofs
Parity
Proof by Contrapositive
Proof by Contradiction
Modular Congruence
Propositional Logic
First-Order Logic
Logic Translations
Logical Negations
Propositional Completeness
Vacuous Truths
Perfect Squares
Tournaments
Functions
Injections
Surjections
Involutions
Monotone Functions
Idempotent Functions
Bijections

Cardinality
Graphs
Connectivity
Independent Sets
Vertex Covers
Graph Complements
Dominating Sets
Bipartite Graphs

The Pigeonhole Principle

Ramsey Theory

Mathematical Induction

Loop Invariants
Complete Induction
Formal Languages

DFAs
Regular Languages
Closure Properties

NFAs
Subset Construction

Kleene Closures

5-Tuples
Hard Reset Strings
Regular Expressions
State Elimination

Distinguishability
Myhill-Nerode Theorem
Nonregular Languages

Extended Transition Functions
Context-Free Grammars
Brzozowski’s Theorem
Turing Machines
Church-Turing Thesis
TM Encodings
Universal Turing Machines
Self-Reference
Decidability
Recognizability
Self-Defeating Objects
Undecidable Problems
The Halting Problem
Verifiers
Diagonalization Language
Complexity Class P
Complexity Class NP
P = NP Problem
Polynomial-Time Reducibility
NP-Completeness

You’'ve done more than just check
a bunch of boxes off a list.

You've given yourself the foundation
to tackle problems from all over
computer science.

PRPs and PRFs ‘F""" CSZ55I

 Pseudo Random Function (PRF) defined over (K, X,Y):
F: K X —5 ¥
such that exists “efficient” algorithm to evaluate F(k,x)

Functions defined
over Carfesian
products:

* Pseudo Random Permutation (PRP)

=h KxX—>X<\

“eﬁicient”}lgorithm to evaluate E(k,x)

ction E(Kk,-) is [one-to-one}«\
“efficient” inversion algorithm
Injectivity:

such that:
(=

Definitions in
ferms of
etficiency!

‘ From CS145 I

Semantics of JOINs (2 tables) |t ccrra

FROM R, S
WHERE R.A=S.B

Cartesian
products:

unique tuples in A,B
Ex:{a bl X {12}
={@,1), (@2), (b,1), (b,2), (c,1), (c,2)}

2. Apply selections / conditions: o
V={(r,s)EX | r.A==r.5) = Filtering!

Set—buil _ .
ermo dlev 3. Apply projections to get final output: = Rretuming only some
nofafion: Z=y.A) foryeY¥ attributes

Recall: Cross product (A X B) is the set of all
1. Take cross product:
X=RxS

Remembering this order is critical to understanding the output of certain queries
(see later on...)

| Strong triadic closure] ‘ From CS124 I
A

If a node Q has two strong tjes to nodes Y and Z, there is an edge between Y and Z
\
f s (6w — ((o———
New definifions
What do graphs
_ . W on graphs:
with these o
properties look
like ?

TYaVlS‘FOVW] some
object To make it
closed under
some operafion!

From CS124

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = ’That U.S.A. poster-print costs $12.40...°
>>>/ﬁittern — B i # set flaa\to allow verbose regexps

([A-Z]\.)+ # abbreviatjions, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency land percentages, e.g. $12.40, 82%
BRGT.T # ellipsis
| [1L.,;"’?20:-_°] # these ifj separate tokens; includes], [

AT

>>> nltk.regexp_tokiize(text, pattern)

[’That’, ’U.S.A.’, ’'pRoster-print’, ’costs’, ’$12.40°, ’...’]

‘\\\\\\5_____ 11s a big

regex!

Describing the
world in sef
Theory!

‘ From CS237A I
Plar

-(Let R(q) € W denote set of points in the world occupied by robot\

when in configuration g
Robot in collision e R(g) N0 # @
«_ Accordingly, free space is defined as: C¢.. = {q € C|R(q) N 0 = 0},

r
L

pace

~

Path planning problem in C-space: compute a continuous path:
- 7:[0,1] = Cpree, with 7(0) = g; and 7(1) = gg

S

—

Model| paths
as tunctions:

From CS251

CS251: Cryptocurrencies and Blockchain Technologies Fall 2018

Assignment #1

Due: 11:59pm on Mon., Oct. 8, 2018
Submit via Gradescope (each answer on a separate page) code: 9RZGVZ

Problem 1. Hash functions and proofs of work. In class we defined two security properties for
a hash function, one called collision resistance and the other called proof-of-work security. Show
that a collision-resistant_hash function may not be proof-of-work secure.

Hint: lef H : X xY — {0,1,...,2" — 1} be a collision-resistant hash function. Construct a new
hash funftion H' : X xY — {0,1,...,2™ — 1} {where m may be greater than n) that is also
collision resistant, but for agixed difficulty D (say, D = 23%) is not proof-of-work secure with
difficulty D. That is, for_gfery puzzle x € X it should be trivial to find a solution y € Y such
that H'(x . This is despite H’ being collision resistant. Remember to explain why
your H' A5 collision resistant, that is, explain why a collision on H’ would yield a collision on H.

whoa, 11’s a
function:

It's a CFa!

S-E

E-T;

T - int T

N E

o ® _
S—--E — ™1 — int
E--T;

Start"‘E—>-T+E

T—-int | E-T-;
T (E) EolewlE

\

CFa:!

I11's an automaton
derived from a

From CS143

ing| | — (E)
E—>-T,
E—--T+E

- T —-int
T—-(E)

(

Search problems ‘From CS221 I

P Definition: search problem

@tates: the set of states)

Sitart € States: starting state
Actions(s): possible actions from state s

Succ(s, a,): where we end up if take action g In state s
Cost(s, a): cost for taking action a in state s

JsEnd(s): whether at end Y
» Succ(s,a) = T'(s,a, 3’;\
« Cost(s,a) = Reward(s,a,s’) \

It's a
CS221 / Autumn 2018 / Liang D FA!

From CS243
IT. Transfer Functions

« A family of transfer functions F
 Basic Properties /: V> V
(")
— Has an identity function
« 3fsuch that AXx) = x, for all x.

— Closed under composition
« if A,keF, fief,e F
\- y,

>

N
It's functions
with specific
properties!

C5243: Foundation of Data Flow 17 M. Lam

pronounced “big-oh of ...” or sometimes “oh of ...” From CS161
/

O(...) means an upper boun

e Let T(n), g(n) be functions of positive integers.
* Think of T(n) as being a runtime: positive and increasing in n.

 We say “T(n) is O(g(n))” if g(n) grows at least as fast as
T(n) as n gets large.

! It's FOL and
[]
Formally, functions:

" T(n) = O(g(n)))
=

dc,ng > 0 s.t. Vn = n,,

 0=T(n)<c-gn)

‘ From CS224W I

f Graph G(V, E) has expansion a: if V'S c V-
V\S])

»

g # of edges leaving S = a- min(|S

Or equivalently:
#edges leaving §
First—order

en(| S [,|V\S
(l | | D definifions on
Vs graphs!

sef difference
and cardinality:

From CS242

Typed lambda calculus

To understand the formal concept of a type system, we’re going to extend our lambda calculus from last week
(henceforth the “untyped” lambda calculus) with a notion of types (the “simply typed” lambda calculus). Here’s the

essentials of the language:
/ Type 7 :: int integer \

| =T function
Expression e :: o variable
n integer

e1 P ey binary operation l \
A(x:7)

. e function

€1 €2 application 11's a

CFa!
\Binop@::: + =%/ /

First, we introduce a language of types, indicated by the variable tau (7). A type is either an integer, or a function from
an input type 7; to an output type 75. Then we extend our untyped lambda calculus with the same arithmetic language

from the first lecture (numbers and binary operators)*. Usage of the language looks similar to before:

From CS166

Definitions
in terms of
strings!

he Anatomy of a Suffix Tree

fA branching word iD ()
\‘ T$ is a string w such | §

that there are
characters a # b 0 $
where wa and wb are
\Substrings of T$.)
« Edge case: the empty
string is always
considered branching.

m

:,.--'
P

m wun

@mmw:

“* W O M WM O O

Vro VS MDW0NSoDO
ol
@mmm:

“*® 0 O

« Theorem: The suffix
tree for a string T has @
an internal node for a
string w if and only if
w 1s a branching word nonsenses$

in I'$. 012345678

"
|

Q

Finite State Machines
From CS144
event causing state transition
actions taken on state transition
— e T —

event
actions

e Represent protocols using state machines

- Sender and receiver each have a state | 11's a generalizatior
ot DFAs!

- Start in some initial state

- Events cause each side to select a state transition

e Transition specifies action taken
- Specified as events/actions
- E.g., software calls send/put packet on network

- E.g., packet arrives/send acknowledgment

From CS168

Reducibility:

Bv_definitiof. we need to_output v if and onlv if
y € S. That i, answering membership queries reduces to solving the Heavy Hitters problem.

BYthe“memb D Propicn We 111ca T TASK O PTCPTOCCSSITIE & SCt S L0 alISWeT (UCTIC

? O

of the form “is y € S”7 (A hash table is the most common solution to this problem.) It is
intuitive that vou cannot correctly answer all membership queries for a set S without storing

S (thereby using linear, rather than constant, space) — if you throw some of S out, you
might get a query asking about the part you threw out, and you won't know the answer.
It’s not too hard to make this idea precise using the Pigeonhole Principle.®

A

—
A Myhill—
Nerode—style
argument:

‘ From CS154 I

Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as
d(x), is the lexicographically shortest string <M, w»>
such that M(w) halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted

as K(x), is |[d(x)]. Using Turing

machines To define
intrinsic informafion
confent:

‘ From CS246 I

Suppose we are given a set of documents D

Each document d covers a set X4 of
words/topics/named entities W

For a set of documents A <D we define

4)
F) = || xe T
_ deA y
Goal: We want to Functions, set
union, and set
ImMax F(A) cardinality:

|A|<k
Note: F(A) is a set function: F(4): Sets - N

You've given yourself the foundation
to tackle problems from all over
computer science.

There’s so much more to explore.
Where should you go next?

Course Recommendations

Theoryland

CS154 A
Phil 151
Phil 152
Math 107]
Math 108 -
Math 113
Math 120
Math 161 |

Math 152 } Number Theory

} Complexity

> Computability

> Graphs

> Functions

} Set Theory

Applications
C5124) } Languages /
CS].4:3 Automata
CS1lol

> Graphs

CS224W)
CS242
CS243 |/ ,

> Functions
CS246
CS251
CS255)

Want to get involved in research?

Learning patterns in randomness
(Greg Valiant)

Fairness and models of computation
(Omer Reingold)

Approximating NP-hard problems
(Moses Charikar)

Optimizing programs... randomly
(Alex Aiken)

Structure from symmetries
(Leo Guibas)

Computing on encrypted data
(Dan Boneh)

Correcting errors automatically
(Mary Wootters)

Game theory, P, and NP
(Aviad Rubenstein)

Efficiency on parallel computers
(Nima Anari)

Logic circuits and random bits
(Li-Yang Tan)

How powerful are quantum computers?
(Adam Bouland)

Solving optimization problems quickly
(Aaron Sidford)

Your Questions

What do you want to know?

Final Thoughts

A Huge Round of Thanks!

There are more problems to
solve than there are programs
capable of solving them.

There is so much more to explore and so
many big questions to ask - many of
which haven't been asked yet!

Theory

Practice

You now know what problems we can solve,
what problems we can't solve, and what
problems we believe we can't solve
efficiently.

Our questions to you:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

