Propositional Logic
Question: How do we formalize the definitions and reasoning we use in our proofs?
Where We're Going

- **Propositional Logic** (Today)
 - Reasoning about Boolean values.
- **First-Order Logic** (Wednesday/Friday)
 - Reasoning about properties of multiple objects.
Outline for Today

- *Propositional Variables*
 - Booleans, math edition!

- *Propositional Connectives*
 - Linking things together.

- *Truth Tables*
 - Rigorously defining connectives.

- *Simplifying Negations*
 - Mechanically computing negations.
Propositional Logic
TakeMath51 \lor \text{TakeCME100}

\neg \text{FirstSucceed} \rightarrow \text{TryAgain}

\text{IsCardinal} \land \text{IsWhite}
TakeMath51 \lor \text{TakeCME100}
\neg \text{FirstSucceed} \rightarrow \text{TryAgain}
\text{IsCardinal} \land \text{IsWhite}

These are \textit{propositional variables}. Each propositional variable stands for a \textit{proposition}, something that is either true or false.
TakeMath51 ∨ TakeCME100
¬FirstSucceed → TryAgain
IsCardinal ∧ IsWhite

These are propositional connectives, which link propositions into larger propositions
Propositional Variables

• In propositional logic, individual propositions are represented by *propositional variables*.

• In a move that contravenes programming style conventions, propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.

 • That said, there’s nothing stopping you from using multiletter names!

• Each variable can take one of two values: true or false. You can think of them as `bool` values.
Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- First, there’s the logical “NOT” operation: \(\neg p \)
- You’d read this out loud as “not \(p \).”
- The fancy name for this operation is *logical negation*.
Propositional Connectives

• There are seven propositional connectives, five of which will be familiar from programming.
• Next, there’s the logical “AND” operation:

\[p \land q \]

• You’d read this out loud as “\(p \) and \(q \).”
• The fancy name for this operation is *logical conjunction*.
Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Then, there’s the logical “OR” operation:

\[p \lor q \]

- You’d read this out loud as “p or q.”
- The fancy name for this operation is logical disjunction. This is an inclusive or.
Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- There’s also the “truth” connective:

\[\top \]

- You’d read this out loud as “true.”
- Although this is technically considered a connective, it “connects” zero things and behaves like a variable that’s always true.
Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Finally, there’s the “false” connective.

\[\perp \]

- You’d read this out loud as “false.”
- Like \(\top \), this is technically a connective, but acts like a variable that’s always false.
Truth Tables

• A truth table is a table showing the truth value of a propositional logic formula as a function of its inputs.

• Let’s go look at the truth tables for the connectives we’ve seen so far:

<table>
<thead>
<tr>
<th>¬</th>
<th>∧</th>
<th>∨</th>
<th>⊤</th>
<th>⊥</th>
</tr>
</thead>
</table>
Summary of Important Points

- The \lor connective is an *inclusive* “or.” It's true if at least one of the operands is true.
 - Similar to the $\|\|$ operator in C, C++, Java, etc. and the `or` operator in Python.
- If we need an exclusive “or” operator, we can build it out of what we already have.
- Try this yourself! Take a minute to combine these operators together to form an expression that represents the exclusive or of p and q (something that’s true if and only if exactly one of p and q are true.)
Quick Question:

What would I have to show you to convince you that the statement $p \land q$ is false?
Quick Question:

What would I have to show you to convince you that the statement $p \lor q$ is false?
de Morgan’s Laws

\[\neg (p \land q) \text{ is equivalent to } \neg p \lor \neg q \]

\[\neg (p \lor q) \text{ is equivalent to } \neg p \land \neg q \]
de Morgan’s Laws in Code

- **Pro tip:** Don't write this:

  ```
  if (!(p() && q())) {
      /* … */
  }
  ```

- Write this instead:

  ```
  if (!p() || !q()) {
      /* … */
  }
  ```

- (This even short-circuits correctly: if `p()` returns false, `q()` is never evaluated.)
Mathematical Implication
Implication

• We can represent implications using this connective:

\[p \rightarrow q \]

• You’d read this out loud as “\(p \) implies \(q \).”
 • The fancy name for this is the *material conditional*.

• **Question:** What should the truth table for \(p \rightarrow q \) look like?

• Pull out a sheet of paper, make a guess, and talk things over with your neighbors!
An implication is false only when the antecedent is true and the consequent is false.

Every formula is either true or false, so these other entries have to be true.
Important observation:
The statement $p \rightarrow q$ is true whenever $p \land \neg q$ is false.
An implication with a false antecedent is called *vacuously true*. An implication with a true consequent is called *trivially true*.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Please commit this table to memory. We’re going to need it, extensively, over the next couple of weeks.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Fun Fact 1: The Contrapositive Revisited
Fun Fact 2: Proof by Contradiction
Fun Fact 3: Implies, Another Way
An Important Equivalence

• Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

\[p \rightarrow q \text{ is equivalent to } \neg(p \land \neg q) \]

• Later on, this equivalence will be incredibly useful:

\[\neg(p \rightarrow q) \text{ is equivalent to } p \land \neg q \]
Another Important Equivalence

• Here's a useful equivalence. Start with

\[p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \land \neg q) \]

• By de Morgan's laws:

\[p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \land \neg q) \]
\[\quad \text{is equivalent to} \quad \neg p \lor \neg \neg q \]
\[\quad \text{is equivalent to} \quad \neg p \lor q \]

• Thus \(p \rightarrow q \) is equivalent to \(\neg p \lor q \)
The Biconditional Connective
The Biconditional Connective

- On Friday, we saw that “p if and only if q” means both that \(p \rightarrow q \) and \(q \rightarrow p \).
- We can write this in propositional logic using the \textit{biconditional} connective:
 \[p \leftrightarrow q \]
- This connective’s truth table has the same meaning as “p implies q and q implies p.”
- Based on that, what should its truth table look like?
- Take a guess, and talk it over with your neighbor!
Biconditionals

- The **biconditional** connective $p \leftrightarrow q$ is read “p if and only if q.”
- Here's its truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

One interpretation of \leftrightarrow is to think of it as equality: the two propositions must have equal truth values.
Negating a Biconditional

• How do we simplify
 \(\neg(p \leftrightarrow q) \)
 using the tools we’ve seen so far?

• There are many options, but here are our two favorites:
 \[p \leftrightarrow \neg q \quad \neg p \leftrightarrow q \]
Operator Precedence

• How do we parse this statement?

 \(\neg x \rightarrow y \lor z \rightarrow x \lor y \land z \)

• Operator precedence for propositional logic:

 \(\neg \rightarrow \land \lor \leftrightarrow \)

• All operators are right-associative.

• We can use parentheses to disambiguate.
Operator Precedence

- How do we parse this statement?
 \[(\neg x) \rightarrow (((y \lor z) \rightarrow (x \lor (y \land z))))\]

- Operator precedence for propositional logic:
 \[
 \neg \quad \land \quad \lor \quad \rightarrow \quad \leftrightarrow
 \]

- All operators are right-associative.
- We can use parentheses to disambiguate.
Operator Precedence

- The main points to remember:
 - \(\neg \) binds to whatever immediately follows it.
 - \(\wedge \) and \(\vee \) bind more tightly than \(\rightarrow \).
- We will commonly write expressions like \(p \wedge q \rightarrow r \) without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Please ask!
The Big Table

<table>
<thead>
<tr>
<th>Connective</th>
<th>Read Aloud As</th>
<th>C++ Version</th>
<th>Fancy Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬</td>
<td>“not”</td>
<td>!</td>
<td>Negation</td>
</tr>
<tr>
<td>∧</td>
<td>“and”</td>
<td>&&</td>
<td>Conjunction</td>
</tr>
<tr>
<td>∨</td>
<td>“or”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⊤</td>
<td>“true”</td>
<td>true</td>
<td>Truth</td>
</tr>
<tr>
<td>⊥</td>
<td>“false”</td>
<td>false</td>
<td>Falsity</td>
</tr>
<tr>
<td>→</td>
<td>“implies”</td>
<td>see PS2!</td>
<td>Implication</td>
</tr>
<tr>
<td>↔</td>
<td>“if and only if”</td>
<td>see PS2!</td>
<td>Biconditional</td>
</tr>
</tbody>
</table>
Time-Out for Announcements!
Ask Me Anything

• Between lectures, I’ll make a post on EdStem soliciting your questions.

• This is a chance to ask questions about any topic: course material, life advice, music recommendations, etc.
 • Just keep things civil and only ask questions if you really want to hear the answer.

• Feel free to questions you like. I’ll take some of the more popular questions in lecture.
Office Hours

• Office hours start today. Think of them as “drop-in help hours” where you can ask questions on problem sets, lecture topics, etc.
 • Check the Guide to Office Hours on the course website for the schedule.

• Most office hours are held in person in the Huang basement. A few are purely online. Mine are in my office, Durand 317.

• Once you arrive, sign up on QueueStatus so that we can help people in the order they arrived:

 https://queuestatus.com/queues/782

• Office hours are much less crowded earlier in the week than later.
Back to CS103!
Recap So Far

- A **propositional variable** is a variable that is either true or false.
- The **propositional connectives** are
 - Negation: $\neg p$
 - Conjunction: $p \land q$
 - Disjunction: $p \lor q$
 - Truth: \top
 - Falsity: \bot
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
Negation Practice

Here’s a propositional formula that contains some negations. Simplify it as much as possible:

$$\neg(p \land q \rightarrow r \lor s)$$
Negation Practice

Here’s a propositional formula that contains some negations. Simplify it as much as possible:

\[p \land q \land \neg r \land \neg s \]
Negation Practice

Here’s a propositional formula that contains some negations. Simplify it as much as possible:

\[\neg \left((p \lor (q \land r)) \leftrightarrow (a \land b \land c \rightarrow d) \right) \]
Negation Practice

Here’s a propositional formula that contains some negations. Simplify it as much as possible:

\[(p \lor (q \land r)) \leftrightarrow (a \land b \land c \land \neg d)\]
Why All This Matters
Why All This Matters

• Suppose we want to prove the following statement:

 “If $x + y = 16$, then $x \geq 8$ or $y \geq 8$”
Why All This Matters

• Suppose we want to prove the following statement:

 “If $x + y = 16$, then $x \geq 8$ or $y \geq 8$”

 $x + y = 16 \rightarrow x \geq 8 \lor y \geq 8$
Why All This Matters

• Suppose we want to prove the following statement:

 “If $x + y = 16$, then $x \geq 8$ or $y \geq 8$”

 $x < 8 \land y < 8 \rightarrow x + y \neq 16$
Why All This Matters

• Suppose we want to prove the following statement:

 “If $x + y = 16$, then $x \geq 8$ or $y \geq 8$”

 $x < 8 \land y < 8 \rightarrow x + y \neq 16$

 “If $x < 8$ and $y < 8$, then $x + y \neq 16$”
Theorem: If $x + y = 16$, then $x \geq 8$ or $y \geq 8$.

Proof: We will prove the contrapositive, namely, that if $x < 8$ and $y < 8$, then $x + y \neq 16$.

Pick x and y where $x < 8$ and $y < 8$. We want to show that $x + y \neq 16$. To see this, note that

\[
x + y < 8 + y \\
< 8 + 8 \\
= 16.
\]

This means that $x + y < 16$, so $x + y \neq 16$, which is what we needed to show. ■
Why This Matters

• Propositional logic is a tool for reasoning about how various statements affect one another.

• To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.

• That said, propositional logic isn't expressive enough to capture all statements. For that, we need something more powerful.
Next Time

- **First-Order Logic**
 - Reasoning about groups of objects.
- **First-Order Translations**
 - Expressing yourself in symbolic math!