
  

Graph Theory
Part Two



  

Outline for Today
● Walks, Paths, and Reachability

● Walking around a graph.
● Graph Complements

● Flipping what’s in a graph.
● The Teleported Train Problem

● A very exciting commute.
● Appendix: The CBS Theorem

● Cardinality meets graph theory!



  

Recap from Last Time



  

Graphs and Digraphs
● A graph is a pair G = (V, E) of a set of 

nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs of nodes. If 

{u, v} ∈ E, then there’s an edge from u to v.
● A digraph is a pair G = (V, E) of a set of 

nodes V and set of directed edges E.
● Each edge is represented as the ordered pair 

(u, v) indicating an edge from u to v.
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Two nodes in an undirected graph are called
adjacent if there is an edge between them.
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Using our Formalisms
● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're 

linked by an edge.
● Formally speaking, we say that two nodes 

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed 

graphs. We usually just say “there’s an edge 
from u to v” as a way of reading (u, v) ∈ E 
aloud.



  

New Stuff!



  

Walks, Paths, and Reachability



  

A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

A closed walk in a graph is a 
walk from a node back to itself. 
(By convention, a closed walk 
cannot have length zero.)

A path in a graph is walk that 
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.
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A cycle in a graph is a closed 
walk that does not repeat any 
nodes or edges except the 
first/last node.



  

A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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(Barstow isn’t 
reachable from SF 
after these road 

closures.)

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.



  

A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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(This graph is 
not connected.)

A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.



  

A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.

A connected component (or 
CC) of G is a maximal set of 
mutually reachable nodes.



  

Fun Facts
● Here’s a collection of useful facts about graphs that 

you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is 

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s 

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V 

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if 

and only if G has exactly one connected component.
● Looking for more practice working with formal 

definitions? Prove these results!



  

Graph Complements



  

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

≈

⬠☜

꩜ ≈

⬠☜

꩜

Graph G Graph Gc
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꩜

+

Graph G isn’t 
connected.



  

≈
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꩜

+

Graph Gc is 
connected.



  

Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.



  

Proving a Disjunction
● We need to prove the statement

G is connected    ∨    Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove 

that Gc is connected.
● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.

Each bubble 
represents one 

connected 
component of G.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.

GC is connected if, 
for any distinct 
nodes u and v, 

there’s a path from 
u to v.

Each bubble 
represents one 

connected 
component of G.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.

GC is connected if, 
for any distinct 
nodes u and v, 

there’s a path from 
u to v.

△

≈

Each bubble 
represents one 

connected 
component of G.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.

GC is connected if, 
for any distinct 
nodes u and v, 

there’s a path from 
u to v.
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represents one 
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component of G.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.

If u and v are in different 
CCs of G, they’re adjacent 

in GC.

If u and v are in the same 
CC of G, then we bridge 
them through a node in a 

different CC of G.

꩜

★

☜

Each bubble 
represents one 

connected 
component of G.



  

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:
Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.
Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.
In either case, we find a path from u to v in Gc, as required. ■



  

Time-Out for Announcements!



  

Problem Set Two Graded

0 – 55 56 – 58 59 – 61 62 – 64 65 – 67 68 – 70 71 – 73 74 – 76

75th Percentile: 72 / 76 (94%)
50th Percentile: 69 / 76 (91%)
25th Percentile: 63 / 76 (83%)



  

Midterm Exam Logistics
● Our first midterm exam is next Monday, 

October 24th, from 7:00PM – 10:00PM.
● Check the course website for logistics.

● We will have class on Friday, but there’s no 
lecture on Monday since we have the 
midterm then.

● If you cannot make this exam time, or if 
you have OAE accommodations you haven’t 
shared with us, please let us know ASAP.



  

Preparing for the Exam
● Make sure to review your feedback on 

PS1 and PS2.
● “Make new mistakes.”
● Come talk to us if you have questions!

● There’s a huge bank of practice problems 
up on the course website.
● We had a request to add a question involving 

code, and that’s now available! Feel free to 
request other types of problems if you’d like.

● Best of luck – you can do this!



  

CTL Support
● The Center for Teaching and Learning 

has tutoring support available if you’re 
looking for extra assistance.

● Want to learn more? Check out their 
website or pick up a bookmark from up 
front.



  

Back to CS103!



  

The Teleported Train Problem



  

A₁

These are teleporters.
Anything entering a
teleporter from the

left side emerges from
the right side of the
paired teleporter.

A₂



  

A₁ A₂B₁ B₂C₁ C₂ D₁ D₂ E₂E₁

Will the train reach 
the end of the 

track? Or will it get 
stuck in a loop?



  

Can You Trap the Train?
● The train always drives to the right.
● The train starts just before the first teleporter.
● Teleporters always link in pairs.
● Teleporters can’t stack on top of one another.
● Teleporters can’t appear at or after the end point.
● You can use as many teleporters as you’d like.
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The Teleporter Digraph
● Each line of teleporters gives rise to a directed graph.

● Each node in the graph represents a segment.
● Each edge represents following a teleporter.

● That digraph consists of paths and cycles.
● Question: Why does the digraph look like this?
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The Teleporter Digraph
● In a directed graph, the indegree of a node is the 

number of edges entering that node. The outdegree 
of a node is the number of edges leaving that node.

● Notice anything about the indegrees and outdegrees 
of this digraph?
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The Teleporter Digraph
● Let G = (V, E) be a digraph where each node’s 

indegree is at most one and each node’s outdegree 
is at most one.

● Theorem: Any walk starting at a node of indegree 
zero is also a path.

This node now
has indegree two.



  

The Teleporter Digraph
● Let G = (V, E) be a digraph where each node’s 

indegree is at most one and each node’s outdegree 
is at most one.

● Theorem: Any walk starting at a node of indegree 
zero is also a path.

The starting node
is supposed to have

indegree zero.



  

The Teleporter Digraph
● Let G = (V, E) be a digraph where each node’s 

indegree is at most one and each node’s outdegree 
is at most one.

● Theorem: Any walk starting at a node of indegree 
zero is also a path.



  

Theorem: Let G = (V, E) be a directed graph where each node has
indegree at most one and outdegree at most one. Consider any
walk T beginning at a node v₀ of indegree zero. Then T is a path.

Proof: Suppose for the sake of contradiction that T is not a path,
meaning that it contains a repeated node. List the nodes in T, 
stopping just before we list the first repeated node. Label the
nodes found this way as

v₀, v₁, v₂, v₃, …, vk.
Nodes v₀, v₁, …, and vₖ are distinct because we’ve stopped just 
before revisiting a node. We also know that the next node in the 
walk (call it r) is a repeated node, with (vₖ, r) being a directed 
edge in E. We now ask: which earlier node is r equal to?

Case 1: r = v₀. This means that (vₖ, v₀) is a directed edge,
which is impossible because v₀ has indegree zero.

Case 2: r = vi for some i ≠ 0. Then (vi – 1, vi) and (vk, vi) are
directed edges in G, which is impossible because vᵢ has
indegree one.

In either case we’ve reached a contradiction, so our assumption 
must have been wrong. Thus T is a path. ■



  

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

The train begins 
before the first 

teleporter, so the 
start node has 
indegree zero.

Therefore, the 
walk we trace out 
is a path, and so 

it has to end 
somewhere.

The only node of 
outdegree zero is 
the one after the 
last teleporter, 

where the goal is.



  

Trapping the Train

A₁ D₂C₁ B₂B₁ C₂ E₁ E₂A₂D₁s f

Theorem: It is impossible to trap the train
if it starts before the first teleporter.



  

Theorem: It is not possible to trap the train in the Teleported Train Problem.

Proof: Consider any arrangement of teleporters. We will prove that the train
makes it to the end without getting stuck in a loop.

Divide the train track into segments denoting the ranges between two 
teleporters or between a teleporter and the start/end of the track. From 
these segments, construct a directed graph whose nodes are the 
segments and where there’s an edge from a segment S₁ to a segment S₂ 
if, upon reaching the end of segment S₁, the train teleports to the start of 
segment S₂.
We claim that every node in this graph has indegree at most one and 
outdegree at most one. To see this, pick any segment. If that segment 
begins with a teleporter, then it has one incoming edge that originates at 
the segment that ends with the paired teleporter. If that segment ends 
with a teleporter, then it has one outgoing edge to the start of the 
segment with the paired teleporter.
Now, consider the walk traced out by the train from the starting segment. 
That segment has indegree zero because it does not begin with a 
teleporter, so by our previous theorem this walk is a path. There are only 
finitely many segments and our path never revisits one, so eventually the 
path ends at a node with outdegree zero. The only node with this 
property is the end segment, so the train eventually reaches the end of 
the track. ■



  

Recap for Today
● We can use walks and closed walks to travel around a 

graph. Walks and closed walks that don’t repeat nodes or 
edges are called paths and cycles, respectively.

● The complement of a graph is a graph formed by 
toggling which edges are included and which are 
excluded. At least one of a graph and its complement will 
always be connected.

● The indegree and outdegree of a node in a digraph are 
the number of edges entering or leaving the node, 
respectively.

● Digraphs where the indegree and outdegree of each node 
are at most one break apart into isolated paths and cycles.

● You can’t trap a train on a track with teleporters, unless 
there’s a teleporter behind the train. 😃



  

Next Time
● The Pigeonhole Principle

● A simple, powerful, versatile theorem.
● Graph Theory Party Tricks

● Applying math to graphs of people!
● A Little Movie Puzzle

● Who watched what?



  

Appendix: The Cantor-Bernstein-
Schroeder Theorem



  

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If |S| ≤ |T| and |T| ≤ |S|,

then |S| = |T|.

(This was first proven by Richard Dedekind.)



  

Theorem (Cantor-Bernstein-Schroeder):
Let S and T be sets. If there is an injection

f : S → T and an injection g : T → S, then
there is a bijection h : S → T.
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The open interval (0, 1)

The closed interval [0, 1]

f(x) = ˣ/₂ + ¹/₄

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

g(x) = ˣ/₂ + ¹/₄

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

0 1

0 1

The open interval (0, 1)

The closed interval [0, 1]

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.

There’s a bijection between these 
sets – though finding a formula for 

one is hard enough to be an 
Optional Fun Problem. 😃



  

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.

f : ℕ → ℕ2

g : ℕ2 → ℕ

f(n) = (0, n)
g(m, n) = 2m · 3n

These functions are injective.
Challenge: Find a bijection h : ℕ → ℕ2.
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Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

S

T
Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

S

T
Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

Every node in this (possibly infinite) 
digraph has outdegree one and indegree 
at most one. Therefore, the digraph 
consists of a mix of paths and cycles.

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

S

T

For nodes within a cycle, define 
the bijection from S to T to be 

“follow the blue arrows.”

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

For nodes in a path starting at a 
red node, have the bijection from 
S to T be “follow the red arrows 

in reverse.”

Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.



  

For nodes in any other path, have 
the bijection from S to T be 

“follow the blue arrows.”

Blue lines represent the injection f : S → T  
 Red lines represent the injection g : T → S  

S

T

Theorem (Cantor-Bernstein-Schroeder): Let S 
and T be sets. If there is an injection f : S → T and an 
injection g : T → S, then there is a bijection h : S → T.
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