Unsolvable Problems
Part One
Outline for Today

- **Self-Reference Revisited**
 - Programs that compute on themselves.
- **Self-Defeating Objects**
 - Objects “too powerful” to exist.
- **The Fortune Teller**
 - Can you escape your fate?
- **Why Do Programs Loop?**
 - … and can we eliminate loops?
- **Undecidable Problems**
 - Something beyond the reach of algorithms.
Recap from Last Time
R and RE

- A language L is *recognizable* if there is a TM M with the following property:
 \[\forall w \in \Sigma^*. \ (M \text{ accepts } w \iff w \in L). \]

- That is, for any string w:
 - If $w \in L$, then M accepts w.
 - If $w \notin L$, then M does not accept w.
 - It might reject w, or it might loop on w.
 - This is a “weak” notion of solving a problem.
 - The class **RE** consists of all the recognizable languages.
A language L is **decidable** if there is a TM M with the following properties:

$$\forall w \in \Sigma^*. (M \text{ accepts } w \leftrightarrow w \in L).$$

M halts on all inputs.

That is, for any string w:

- If $w \in L$, then M accepts w.
- If $w \notin L$, then M rejects w.

This is a “strong” notion of solving a problem.

The class \mathbf{R} consists of all the decidable languages.
The Universal TM

- The *universal Turing machine*, denoted U_{TM}, is a TM with the following behavior: when run on a string $\langle M, w \rangle$, where M is a TM and w is a string, U_{TM} will

 ... accept $\langle M, w \rangle$ if M accepts w,
 ... reject $\langle M, w \rangle$ if M rejects w, and
 ... loop on $\langle M, w \rangle$ if M loops on w.

- A_{TM} is the language recognized by the universal TM. This is the language

 \[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]
Self-Referential Programs

- Computing devices can compute on their own source code:

 Theorem: It is possible to construct TMs that perform arbitrary computations on their own source code.

- This allows us to write programs that work on their own source code.
What do each of these pieces of code do?

```cpp
void cormorant() {
    string me = /* source code of * cormorant */;
    cout << me << endl;
}

bool curlew(string input) {
    string me = /* source code of * curlew */;
    return input == me;
}

int avocet() {
    string me = /* source code of * avocet */;
    int result = 0;
    for (char ch: me) {
        if (ch == 'a') result++;
    }
    return result;
}
```
New Stuff!
Part One: Self-Defeating Objects
A *self-defeating object* is an object whose essential properties ensure it doesn’t exist.
Question: Why is there no largest integer?

Answer: Because if n is the largest integer, what happens when we look at $n+1$?
There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer n. Consider the integer $n+1$. Notice that $n < n+1$. But then n isn’t the largest integer. Contradiction! ■-ish
Self-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer \(n \).

Consider the integer \(n+1 \).

Notice that \(n < n+1 \).

But then \(n \) isn’t the largest integer.

Contradiction! ■-ish

We’re using \(n \) to construct something that undermines \(n \), hence the term “self-defeating.”
An Important Detail
Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that $x > x - 1$.

So there’s no contradiction. ■-ish

Careful – we’re assuming what we’re trying to prove!

How do we know there’s no contradiction? We just checked one case.
Self-Defeating Objects

- If you can show
 \[x \text{ exists} \rightarrow \bot \]
 then you know that \(x \) doesn’t exist. (This is a proof by contradiction.)

- If you can show
 \[x \text{ exists} \rightarrow T \]
 you cannot conclude that \(x \) exists. (This is not a valid proof technique.)
Part Two: The Fortune Teller
The Fortune Teller

• A fortune teller appears who claims they can see into the future.

• For a nominal fee, the fortune teller will tell you anything you want to know about the future.
The Fortune Teller

• One day, a trickster arrives. The trickster thinks the fortune teller is lying and can’t really see the future.

• The trickster says the following:

 "I have a yes/no question about the future. But before I ask my question, let’s talk payment.

 If you answer ‘yes,’ then I’ll pay you $42.

 If you answer ‘no,’ then I’ll pay you $137."

• The fortune teller thinks for a moment, then agrees.

Trickster pays $42 if the fortune teller answers “yes.”

Trickster pays $137 if the fortune teller answers “no.”
The Fortune Teller

- The trickster then asks this question:

 “Am I going to pay you $137?”

- The fortune teller is trapped!

- Talk to your neighbor – why?

 Trickster pays $42 if the fortune teller answers “yes.”

 Trickster pays $137 if the fortune teller answers “no.”
The Fortune Teller

- The payment scheme the fortune teller agreed to means
 \[\text{Fortune Teller Says Yes} \iff \text{Trickster Pays $42}. \]
- The trickster’s question to the fortune teller means
 \[\text{Fortune Teller Says Yes} \iff \text{Trickster Pays $137}. \]
- Putting this together, we get
 \[\text{Trickster Pays $137} \iff \text{Trickster Pays $42}. \]
- This is impossible!

Trickster pays $42 if the fortune teller answers “yes.”

Trickster pays $137 if the fortune teller answers “no.”
The Fortune Teller

• The fortune teller is a self-defeating object.
• The trickster’s strategy is to couple the fortune teller’s behavior to what the future holds.
 • The trickster’s behavior is chosen in advance to make the fortune teller’s answer wrong.
• Therefore, the fortune teller can’t answer all questions about all people in the future.

Trickster pays $42 if the fortune teller answers “yes.”

Trickster pays $137 if the fortune teller answers “no.”
Part Three: Why Do Programs Loop?
Thoughts on Loops

• In practice, the programs we write sometimes go into infinite loops.

• In Theoryland, Turing machines are allowed to loop. This happens if they don’t accept and don’t reject.

• Question: Why are infinite loops possible?

• Or rather: are infinite loops an inherent part of computation, or are they some weird sort of “accident” in how we program computers?
Thoughts on Loops

- **Theorem:** The language A_{TM} is recognizable, but undecidable.
 - There’s a recognizer for A_{TM} (specifically, the universal Turing machine U_{TM}).
 - It is impossible to build a decider for this language.
 - Stated differently, there’s a program we can write (a universal TM) that *has* to loop infinitely on some inputs.
- **Goal:** Prove this theorem, and explore its theoretical and philosophical implications.
A_{TM} Revisited

• As a refresher, the language A_{TM} is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

• The universal TM U_{TM} has the following behavior when given as input a TM M and a string w:
 • If M accepts w, then U_{TM} accepts $\langle M, w \rangle$.
 • If M rejects w, then U_{TM} rejects $\langle M, w \rangle$.
 • If M loops on w, then U_{TM} loops on $\langle M, w \rangle$.

• U_{TM} is a recognizer for A_{TM}, but because of that last case it’s not a decider for A_{TM}.
A\textsubscript{TM} Revisited

- As a refresher, the language A\textsubscript{TM} is
 \[A\textsubscript{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}. \]
- Given a TM \(M \) and a string \(w \), a decider \(D \) for A\textsubscript{TM} would need to have this behavior:
 - If \(M \) accepts \(w \), then \(D \) accepts \(\langle M, w \rangle \).
 - If \(M \) rejects \(w \), then \(D \) rejects \(\langle M, w \rangle \).
 - If \(M \) loops on \(w \), then \(D \) rejects \(\langle M, w \rangle \).
- This is basically the same set of requirements as U\textsubscript{TM}, except for what happens if \(M \) loops on \(w \).
- Our goal is to prove that there is no way to build a program that meets these requirements.
A_{TM} Revisited

- We can envision a decider for A_{TM} as a function

  ```
  bool willAccept(string fn, string input)
  ```

 that takes as input the source code of a function (fn) and a string representing an input to that function ($input$).

- It then does the following:
 - If $fn(input)$ returns true, $willAccept(fn, input)$ returns true.
 - If $fn(input)$ returns false, $willAccept(fn, input)$ returns false.
 - If $fn(input)$ loops, then $willAccept(fn, input)$ returns false.

- We’re going to show it’s impossible to write a function that actually does this. But for now, let’s just explore what such a decider would do.
For each of these instances, what does `willAccept(function, input)` return?

```cpp
function = "bool f(string input) {
    if (input == "") return false;
    return input[0] == 'a';
}";
input = "abbababba";
willAccept(function, input) = ?

function = "bool g(string input) {
    while (true) {
        input += input;
    }
}";
input = "yay! ";
willAccept(function, input) = ?

function = "bool h(string input) {
    for (char c: input) {
        if (c != input[0]) return true;
    }
    return false;
}";
input = "aaaaaa";
willAccept(function, input) = ?

function = "bool j(string input) {
    int n = input.length();
    while (n > 1) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return true;
}";
input = /* 10^{137} a's */;
willAccept(function, input) = ?
```
Deciding A_{TM}

- Surprising fact: until 2019, no one knew whether there were integers x, y, and z where
 \[x^3 + y^3 + z^3 = 33. \]

- A heavily optimized computer search found this answer:
 \[
 x = 8,866,128,975,287,528 \\
 y = -8,778,405,442,862,239 \\
 z = -2,736,111,468,807,040
 \]

- As of November 2021, no one knows whether there are integers x, y, and z where
 \[x^3 + y^3 + z^3 = 114. \]
Deciding A_{TM}

• Consider the language

$$L = \{ a^n \mid \exists x \in \mathbb{Z}. \exists y \in \mathbb{Z}. \exists z \in \mathbb{Z}. x^3 + y^3 + z^3 = n \}$$

• Here’s code for a recognizer to see whether such a triple exists:

```cpp
bool hasTriple(int n) {
    for (int max = 0; ; max++)
        for (int x = -max; x <= max; x++)
            for (int y = -max; y <= max; y++)
                for (int z = -max; z <= max; z++)
                    if (x*x*x + y*y*y + z*z*z == n)
                        return true;
}
```

• Imagine calling `willAccept(/* hasTriple code */ , 114).
 • If such a triple exists, `willAccept` returns true.
 • If no such triple exists, `willAccept` returns false.

Key Intuition: However `willAccept` is implemented, it has to be clever enough to resolve open problems in mathematics!
Why is A_{TM} Hard?

- **Intuition**: A decider for A_{TM} would be able to...
 - ... determine whether the hailstone sequence terminates for any input. (Write a recognizer that runs the hailstone sequence, then feed it into the decider for A_{TM}.)
 - ... see if any number is the sum of three cubes. (Write a recognizer that tries all infinitely many triples of integers, then feed it into the decider for A_{TM}.)
 - ... and much, much more.
- In other words, this seemingly simple problem of “is this program going to terminate?” accidentally scoops up a bunch of other seemingly harder problems.
Time-Out for Announcements!
On Rigor and Formalism in Math

• Terry Tao, considered by many to be the greatest living mathematician, has an essay about learning mathematics.

• It explains why formal proofs and rigorous arguments are an important part of learning math – and why it can be a bit tricky at times.

• You can read it online here.
Your Questions
“What are your thoughts on choosing between Computer Science and Data Science as a major? What do you think are the biggest differences between the two?”

They’re both great! It’s more a function of what you want to do.
Back to CS103!
Part Four: Putting It All Together
To Recap

- We’re assuming that, somehow, someone wrote a function
  ```
  bool willAccept(string function, string input);
  ```
 that takes the code of a function and an input to that function, then
 - returns true if function(input) returns true, and
 - returns false if function(input) doesn’t return true.

- **Goal:** Show that this decider is “self-defeating;” its power is so great that it undermines itself.

- **Idea:** Convert the fortune teller story into a program.
Trickster pays $42 if the fortune teller answers "yes."

Trickster pays $137 if the fortune teller answers "no."
bool willAccept(string function, string input) {
 // Returns true if function(input) returns true.
 // Returns false otherwise.
}

bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
}
```cpp
bool willAccept(string function, string input) {
    // Returns true if function(input) returns true.
    // Returns false otherwise.
}

bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

A self-defeating object.

Using that object against itself.
bool willAccept(string function, string input) {
 // Returns true if function(input) returns true.
 // Returns false otherwise.
}

bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
}

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer \(n \).

Consider the integer \(n+1 \).

Notice that \(n < n+1 \).

But then \(n \) isn’t the largest integer.

Contradiction! \(-ish\)
Theorem: $A_{TM} \notin R$.
Theorem: $A_{TM} \notin R$.

Proof:
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function $bool \ willAccept(string \ function, \ string \ w)$ that takes in the source code of a function $function$ and a string w, then returns $true$ if $function(w)$ returns true and returns false otherwise. Given this, consider this function $trickster$:

$$bool \ trickster(string \ input) \{ \ \ \ \ string \ me = /* \ source \ code \ of \ trickster */; \ \ \ \ return !willAccept(me, input); \}$$

Since $willAccept$ decides A_{TM} and me holds the source of $trickster$, we know that $willAccept(me, input)$ returns $true$ if and only if $trickster(input)$ returns $true$. Given how $trickster$ is written, we see that $willAccept(me, input)$ returns $true$ if and only if $trickster(input)$ returns $false$. This means that $trickster(input)$ returns $true$ if and only if $trickster(input)$ returns $false$. This is impossible. We've reached a contradiction, so our assumption was wrong and A_{TM} is undecidable. ■
Theorem: \(A_{TM} \notin R. \)

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}\]

that takes in the source code of a function \(function \) and a string \(w \), then returns true if \(function(w) \) returns true and returns false otherwise.

Since \(\text{willAccept} \) decides \(A_{TM} \) and \(me \) holds the source of \(\text{trickster} \), we know that \(\text{willAccept}(me, input) \) returns true if and only if \(\text{trickster}(input) \) returns true.

Given how \(\text{trickster} \) is written, we see that \(\text{willAccept}(me, input) \) returns true if and only if \(\text{trickster}(input) \) returns false.

This means that \(\text{trickster}(input) \) returns true if and only if \(\text{trickster}(input) \) returns false.

This is impossible. We've reached a contradiction, so our assumption was wrong and \(A_{TM} \) is undecidable. ■
Theorem: \(A_{TM} \notin R \).

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}
\]

that takes in the source code of a function \(function \) and a string \(w \), then returns true if \(function(w) \) returns true and returns false otherwise. Given this, consider this function trickster:

```cpp
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```cpp
bool willAccept(string function, string w);
```

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise. Given this, consider this function trickster:

```cpp
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```
Theorem: $\text{A}_{\text{TM}} \notin \text{R}$.

Proof: By contradiction; assume that $\text{A}_{\text{TM}} \in \text{R}$. Then there is a decider D for A_{TM}. We can represent D as a function

$$\text{bool} \ \text{willAccept}(\text{string} \ \text{function}, \ \text{string} \ w);$$

that takes in the source code of a function function and a string w, then returns true if $\text{function}(w)$ returns true and returns false otherwise. Given this, consider this function trickster:

```cpp
bool \ \text{trickster}(\text{string} \ \text{input}) {  
    \text{string} \ \text{me} = /* \text{source code of trickster} */;  
    \text{return} \ !\text{willAccept}(\text{me}, \ \text{input});  
}
```

Since willAccept decides A_{TM} and me holds the source of trickster, we know that $\text{willAccept}(\text{me}, \ \text{input})$ returns true if and only if $\text{trickster}(\text{input})$ returns false.

This means that $\text{willAccept}(\text{me}, \ \text{input})$ returns true if and only if $\text{trickster}(\text{input})$ returns false. This is impossible. We've reached a contradiction, so our assumption was wrong and A_{TM} is undecidable. ■
Theorem: \(A_{\text{TM}} \not\in R \).

Proof: By contradiction; assume that \(A_{\text{TM}} \in R \). Then there is a decider \(D \) for \(A_{\text{TM}} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}\]

that takes in the source code of a function \(\text{function} \) and a string \(w \), then returns true if \(\text{function}(w) \) returns true and returns false otherwise. Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input)} \{ \\
\text{string me = /* source code of \text{trickster} */;} \\
\text{return !willAccept(me, input);} \\
\}
\]

Since \(\text{willAccept} \) decides \(A_{\text{TM}} \) and \(\text{me} \) holds the source of \(\text{trickster} \), we know that \(\text{willAccept(me, input)} \) returns true if and only if \(\text{trickster(input)} \) returns true. Given how \(\text{trickster} \) is written, we see that \(\text{willAccept(me, input)} \) returns true if and only if \(\text{trickster(input)} \) returns false.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```c
bool willAccept(string function, string w);
```

that takes in the source code of a function `function` and a string `w`, then returns true if `function(w)` returns true and returns false otherwise. Given this, consider this function `trickster`:

```c
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Since `willAccept` decides A_{TM} and `me` holds the source of `trickster`, we know that

- `willAccept(me, input)` returns true if and only if `trickster(input)` returns true.

Given how `trickster` is written, we see that

- `willAccept(me, input)` returns true if and only if `trickster(input)` returns false.

This means that

- `trickster(input)` returns true if and only if `trickster(input)` returns false.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```cpp
bool willAccept(string function, string w);
```

that takes in the source code of a function `function` and a string `w`, then returns true if `function(w)` returns true and returns false otherwise. Given this, consider this function `trickster`:

```cpp
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Since `willAccept` decides A_{TM} and `me` holds the source of `trickster`, we know that

`willAccept(me, input)` returns true if and only if `trickster(input)` returns true.

Given how `trickster` is written, we see that

`willAccept(me, input)` returns true if and only if `trickster(input)` returns false.

This means that

`trickster(input)` returns true if and only if `trickster(input)` returns false.

This is impossible.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```
bool willAccept(string function, string w);
```

that takes in the source code of a function `function` and a string `w`, then returns true if `function(w)` returns true and returns false otherwise. Given this, consider this function `trickster`:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Since `willAccept` decides A_{TM} and `me` holds the source of `trickster`, we know that

$willAccept(me, input)$ returns true if and only if $trickster(input)$ returns true.

Given how `trickster` is written, we see that

$willAccept(me, input)$ returns true if and only if $trickster(input)$ returns false.

This means that

$trickster(input)$ returns true if and only if $trickster(input)$ returns false.

This is impossible. We’ve reached a contradiction, so our assumption was wrong and A_{TM} is undecidable.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

$$\text{bool } \text{willAccept(string function, string w);}$$

that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise. Given this, consider this function trickster:

$$\text{bool } \text{trickster(string input) \{ }
\text{string me = /* source code of trickster */; }
\text{return !willAccept(me, input);}
\text{\}}$$

Since willAccept decides A_{TM} and me holds the source of trickster, we know that

$\text{willAccept(me, input)}$ returns true if and only if trickster(input) returns true. Given how trickster is written, we see that

$\text{willAccept(me, input)}$ returns true if and only if trickster(input) returns false. This means that

trickster(input) returns true if and only if trickster(input) returns false.

This is impossible. We’ve reached a contradiction, so our assumption was wrong and A_{TM} is undecidable. ■
What Does This Mean?

• In one fell swoop, we've proven that
 • A_{TM} is **undecidable**; there is no general algorithm that can determine whether a TM will accept a string.
 • $\mathbb{R} \neq \mathbb{RE}$, because $A_{TM} \notin \mathbb{R}$ but $A_{TM} \in \mathbb{RE}$.
• What do these three statements really mean? As in, why should you care?
What exactly does it mean for A_{TM} to be undecidable?

Intuition: The only general way to find out what a program will do is to run it.

As you'll see, this means that it's provably impossible for computers to be able to answer most questions about what a program will do.
\[A_{\text{TM}} \notin \mathbb{R} \]

- At a more fundamental level, the existence of undecidable problems tells us the following:

 There is a difference between what is true and what we can discover is true.

- Given a TM \(M \) and a string \(w \), one of these two statements is true:

 \(M \) accepts \(w \) \(M \) does not accept \(w \)

But since \(A_{\text{TM}} \) is undecidable, there is no algorithm that can always determine which of these statements is true!
Because $\mathbb{R} \neq \mathbb{RE}$, there is a difference between decidability and recognizability:

In some sense, it is fundamentally harder to solve a problem than it is to check an answer.

There are problems where, when the answer is “yes,” you can confirm it (run a recognizer), but where if you don’t have the answer, you can’t come up with it in a mechanical way (build a decider).
Next Time

- **Why All This Matters**
 - Important, practical, undecidable problems.
- **Intuiting RE**
 - What exactly is the class RE all about?
- **Verifiers**
 - A totally different perspective on problem solving.
- **Beyond RE**
 - Finding an impossible problem using very familiar techniques.