Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- Propositional Logic (Today)
- Reasoning about Boolean values.
- First-Order Logic (Wednesday/Friday)
- Reasoning about properties of multiple objects.

Propositional Logic

A proposition is a statement that is either true or false.

In other words, English sentences can be propositions, but not all are (for example, commands and questions can't be propositions).

Propositional Logic

- Propositional logic is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of propositional variables combined via propositional connectives.
- Each variable represents some proposition, such as "You liked it" or "You should have put a ring on it."
- Connectives encode how propositions are related, such as "If you liked it, then you should have put a ring on it."

Propositional Logic as a Boolean Algebra

- In elementary school arithmetic, we learn that two expressions are equivalent, for specific numbers:

$$
\begin{aligned}
(9+5) / 7 & =(1 / 7)(9+5) \\
(14) / 7 & =(1 / 7)(14) \\
2 & =2
\end{aligned}
$$

- In high school, we learn algebra, which lets us study the structural patterns of equivalence, regardless of the specific numbers involved:

$$
(a+b) / c=(1 / c)(a+b)
$$

- Algebra replaces the numbers with variables so we can focus on analyzing and manipulating the structure.

Propositional Logic as a Boolean Algebra

- Philosophers, mathematicians, and logicians wanted to do the same thing that algebra does for arithmetic, but for the analysis of the structure of arguments not analysis of the structure of numeric calculations.
- We replace individual English sentences that state facts with propositional variables, and replace the "if...then," "and," "or," etc. with operator symbols.
- So we can focus on analyzing and manipulating the structure.

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- Each variable can take one one of two values: true or false.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- First, there's the logical "NOT" operation: $\neg p$
- You'd read this out loud as "not p."
- The fancy name for this operation is logical negation.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Next, there's the logical "AND" operation:

p \wedge q

- You'd read this out loud as " p and q."
- The fancy name for this operation is logical conjunction.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Then, there's the logical "OR" operation:

p V q

- You'd read this out loud as " p or q."
- The fancy name for this operation is logical disjunction. This is an inclusive or.

Truth Tables

- A truth table is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's go look at the truth tables for the three connectives we've seen so far:

$$
\neg \quad \Lambda \quad V
$$

Summary of Important Points

- The v connective is an inclusive "or." It's true if at least one of the operands is true.
- Similar to the || operator in C, C++, Java, etc. and the or operator in Python.
- If we need an exclusive "or" operator, we can build it out of what we already have.
- Try this yourself! Take a minute to combine these operators together to form an expression that represents the exclusive or of p and q (something that's true if and only if exactly one of p and q are true.)

Mathematical Implication

Implication

- We can represent implications using this connective:

$$
p \rightarrow q
$$

- You'd read this out loud as " p implies q."
- Question: What should the truth table for $p \rightarrow q$ look like?
- Pull out a sheet of paper, make a guess, and talk things over with your neighbors!

Implication

Dr. Lee: "If you pick a perfect March Madness bracket this year, then I'll give you an A+ in CS103."

What if...

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Implication

- ...you pick a perfect bracket and get an A+?
- ...you pick a bad bracket and get an A+?
- ...you pick a perfect bracket and get a C?
- ...you pick a bad bracket and get a C?

Important observation:
The statement $p \rightarrow q$ is true whenever $p \wedge \neg q$ is false.

An implication with a false antecedent is called vacuously true.

> Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

Fun Fact: The Contrapositive Revisited

The Biconditional Connective

The Biconditional Connective

- On Friday, we saw that " p if and only if q " means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the biconditional connective:

$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$

- This connective's truth table has the same meaning as " p implies q and q implies p."
- Based on that, what should its truth table look like?
- Take a guess, and talk it over with your neighbor!

Biconditionals

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Here's its truth table:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

Biconditionals

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Here's its truth table:

True and False

- There are two more "connectives" to speak of: true and false.
- The symbol T is a value that is always true.
- The symbol \perp is value that is always false.
- These are often called connectives, though they don't connect anything.
- (Or rather, they connect zero things.)

Proof by Contradiction

- Suppose you want to prove p is true using a proof by contradiction.
- The setup looks like this:
- Assume p is false.
- Derive something that we know is false.
- Conclude that p is true.
- In propositional logic:

$$
(\neg p \rightarrow \perp) \rightarrow p
$$

Operator Precedence

- How do we parse this statement?

$$
\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

$$
\begin{aligned}
& \neg \\
& \Lambda \\
& \vee \\
& \rightarrow \\
& \leftrightarrow
\end{aligned}
$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee(y \wedge z)
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow y \vee z \rightarrow x \vee(y \wedge z)
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow(y \vee z) \rightarrow(x \vee(y \wedge z))
$$

- Operator precedence for propositional logic:
- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow(y \vee z) \rightarrow(x \vee(y \wedge z))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow((y \vee z) \rightarrow(x \vee(y \wedge z)))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg x) \rightarrow((y \vee z) \rightarrow(x \vee(y \wedge z)))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- The main points to remember:
- \neg binds to whatever immediately follows it.
- \wedge and v bind more tightly than \rightarrow.
- We will commonly write expressions like $p \wedge q \rightarrow r$ without adding parentheses.
- For more complex expressions, let's agree to use parentheses!

The Big Table

Connective	Read Aloud As	C++ Version	Fancy Name	
\neg	"not"	$!$	Negation	
\wedge	"and"	\&\&	Conjunction	
\vee	"or"	\\|।	Disjunction	
\rightarrow	"implies"	see PS2!	Implication	
\leftrightarrow	"if and only if"	see PS2!	Biconditional	
\top	"true"	true	Truth	
\perp	"false"	false	Falsity	

Recap So Far

- A propositional variable is a variable that is either true or false.
- The propositional connectives are
- Negation: $\neg p$
- Conjunction: $p \wedge q$
- Disjunction: $p \vee q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: T
- False: \perp

Translating into Propositional Logic

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.

> "I won't see a total solar eclipse
> if I'm not in the path of totality."

Some Sample Propositions

a : I will be in the path of totality.
b : I will see a total solar eclipse.

> "I won't see a total solar eclipse
> if I'm not in the path of totality."

$$
\neg a \rightarrow \neg b
$$

" p if q "

translates to

$$
q \rightarrow p
$$

It does not translate to

$$
p \rightarrow q
$$

Some Sample Propositions

a : I will be in the path of totality. b : I will see a total solar eclipse. c : There is a total solar eclipse today.

Some Sample Propositions

a : I will be in the path of totality. b : I will see a total solar eclipse.
c : There is a total solar eclipse today.

> "II I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

Some Sample Propositions

a : I will be in the path of totality. b : I will see a total solar eclipse. c : There is a total solar eclipse today.
"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."
$a \wedge \neg c \rightarrow \neg b$

" p, but q "

translates to
$\boldsymbol{p} \wedge \boldsymbol{q}$

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
- In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince you that the statement $\boldsymbol{p} \wedge \boldsymbol{q}$ is false?

Quick Question:

What would I have to show you to convince you that the statement $\boldsymbol{p} \mathbf{v} \boldsymbol{q}$ is false?

de Morgan's Laws

- Using truth tables, we concluded that

$$
\neg(p \wedge q)
$$

is equivalent to

$$
\neg p \vee \neg q
$$

- We also saw that

$$
\neg(p \vee q)
$$

is equivalent to

$$
\neg p \wedge \neg q
$$

- These two equivalences are called De Morgan's Laws.

de Morgan's Laws in Code

- Pro tip: Don't write this:

$$
\begin{aligned}
& \text { if }(!(p() \& \& q()))\{ \\
& \quad / * \ldots * / \\
& \}
\end{aligned}
$$

- Write this instead:

$$
\begin{gathered}
\text { if (!p() || !q()) \{ } \\
\text { /* ... */ }
\end{gathered}
$$

$$
\}
$$

- (This even short-circuits correctly!)

An Important Equivalence

- Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

$$
p \rightarrow q \quad \text { is equivalent to } \quad \neg(p \wedge \neg q)
$$

- Later on, this equivalence will be incredibly useful:
$\neg(p \rightarrow q) \quad$ is equivalent to $p \wedge \neg q$

Another Important Equivalence

- Here's a useful equivalence. Start with $p \rightarrow \boldsymbol{q}$ is equivalent to $\neg(\boldsymbol{p} \wedge \neg q)$
- By de Morgan's laws:

$$
\begin{array}{lll}
p \rightarrow \boldsymbol{q} & \text { is equivalent to } \neg(p \wedge \neg q) \\
& \text { is equivalent to } \neg p \vee \neg \neg q \\
& \text { is equivalent to } \neg p \vee q
\end{array}
$$

- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent to $\neg \boldsymbol{p} \vee \boldsymbol{q}$

Another Important Equivalence

If p is false, then $\neg \boldsymbol{p} \vee q$ is true. If \boldsymbol{p} is true, then q has
to be true for the whole expression to be true.

- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is equivalent to $\neg \boldsymbol{p} \vee \boldsymbol{q}$

Next Time

- First-Order Logic
- Reasoning about groups of objects.
- First-Order Translations
- Expressing yourself in symbolic math!

