Cardinality

Outline for Today

- Bijections

- A key and important class of functions.
- Cardinality, Formally
- What does it mean for two sets to have the same size?
- Cantor's Theorem, Formally
- Revisiting our Day 1 lecture.
- Further exploration: On the problem set, you'll explore the proof in more depth and see some other applications.
- Further reading: Guide to Cantor's Theorem, on the course website

Bijections

Injections and Surjections

- An injective function associates at most one element of the domain with each element of the codomain.
- A surjective function associates at least one element of the domain with each element of the codomain.

Injections and Surjections

- An injective function associates at most one element of the domain with each element of the codomain.
- A surjective function associates at least one element of the domain with each element of the codomain.
- New! A bijective function associates exactly one element of the domain with each element of the codomain.

Bijections

- A bijection is a function that is both injective and surjective.
- Intuitively, if $f: A \rightarrow B$ is a bijection, then f represents a way of pairing off elements of A and elements of B.

Cardinality Revisited

Cardinality

- Recall (from our first lecture!) that the cardinality of a set is the number of elements it contains.
- If S is a set, we denote its cardinality by $|S|$.

Comparing Cardinality

- Saying two finite sets are equal relies on a definition of "equal" for integers.
- $|\{1,2\}|=2=2=|\{3,6\}|$ is true, because $=$ is defined for integers
- Defining "equal" for infinite set cardinality can't rely on the integer "=" operator, because infinite values are not integers.
- Intuition: Two sets have the same cardinality if there's a way to pair off their elements.

Comparing Cardinalities

- Here is the formal definition of what it means for two sets to have the same cardinality:

$$
|S|=|T| \text { if there exists a bijection } f: S \rightarrow T
$$

Comparing Cardinalities

- Here is the formal definition of what it means for two sets to have the same cardinality:

$$
|S|=|T| \text { if there exists a bijection } f: S \rightarrow T
$$

Comparing Cardinalities

- Here is the formal definition of what it means for two sets to have the same cardinality:
$|S|=|T|$ if there exists a bijection $f: S \rightarrow T$

Comparing Cardinalities

- Here is the formal definition of what it means for two sets to have the same cardinality:
$|S|=|T|$ if there exists a bijection $f: S \rightarrow T$

Fun with Cardinality

Terminology Refresher

- Let a and b be real numbers where $a \leq b$.
- The notation $[\boldsymbol{a}, \boldsymbol{b}]$ denotes the set of all real numbers between a and b, inclusive.

$$
[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}
$$

- The notation $(\boldsymbol{a}, \boldsymbol{b})$ denotes the set of all real numbers between a and b, exclusive.

$$
(a, b)=\{x \in \mathbb{R} \mid a<x<b\}
$$

Consider the sets [0, 1] and [0, 2].
How do their cardinalities compare?

$f:[0,1] \rightarrow[0,2]$
$f(x)=2 x$

Theorem: $|[0,1]|=|[0,2]|$

Theorem: $|[0,1]|=|[0,2]|$
Proof:

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$. Let $x=y / 2$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $x_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x
$$

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x=2(y / 2)
$$

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x=2(y / 2)=y
$$

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x=2(y / 2)=y
$$

so $f(x)=y$, as required.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in[0,1]$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will show that $x_{1}=x_{2}$. To see this, notice that since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see that $2 x_{1}=2 x_{2}$, which in turn tells us that $x_{1}=x_{2}$, as required.
Finally, we will show that f is surjective. To do so, consider any $y \in[0,2]$. We'll show that there is some $x \in[0,1]$ where $f(x)=y$.
Let $x=y / 2$. Since $y \in[0,2]$, we know $0 \leq y \leq 2$, and therefore that $0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x=2(y / 2)=y
$$

so $f(x)=y$, as required.

Theorem: $|[0,1]|=|[0,2]|$
Proof: Consider the function $f:[0,1] \rightarrow[0,2]$ defined as $f(x)=2 x$. We will prove that f is a bijection.
First, we will show that f is a well-defined function. Choose any $x \in[0,1]$. This means that $0 \leq x \leq 1$, so we know that $0 \leq 2 x \leq 2$. Consequently, we see that $0 \leq f(x) \leq 2$, so $f(x) \in[0,2]$.
Next, we'll show that f $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will sho since $f\left(\chi_{1}\right)=f\left(\chi_{2}\right)$, we se that $x_{1}=x_{2}$, as required.
Finally, we will show tha $y \in[0,2]$. We'll show that Let $x=y / 2$. Since $y \in[0,2$

$0 \leq y / 2 \leq 1$. We picked $x=y / 2$, so we know that $0 \leq x \leq 1$, which in turn means $x \in[0,1]$. Moreover, notice that

$$
f(x)=2 x=2(y / 2)=y,
$$

so $f(x)=y$, as required.

Some Properties of Cardinality

Theorem: For any set A, we have $|A|=|A|$.
Proof: Consider any set A, and let $f: A \rightarrow A$ be the function defined as $f(x)=x$. We will prove that f is a bijection.
First, we'll show that f is a well-defined function. To see this, note that for any $x \in A$, we have $f(x)=x \in A$, as needed.
Next, we'll show that f is injective. Pick any $\chi_{1}, x_{2} \in A$ where $f\left(x_{1}\right)=f\left(x_{2}\right)$. We need to show that $x_{1}=x_{2}$. Since $f\left(x_{1}\right)=f\left(x_{2}\right)$, we see by definition of f that $x_{1}=x_{2}$, as required.
Finally, we'll show that f is surjective. Consider any $y \in A$. We will prove that there is some $x \in A$ where $f(x)=y$. Pick $x=y$. Then $x \in A$ (since $y \in A$) and $f(x)=x=y$, as required.

Theorem: If A, B, and C are sets where $|A|=|B|$ and $|B|=|C|$, then $|A|=|C|$.
Proof: Consider any sets A, B, and C where $|A|=|B|$ and $|B|=|C|$. We need to prove that $|A|=|C|$. To do so, we need to show that there is a bijection from A to C.
Since $|A|=|B|$, we know that there is a some bijection $f: A \rightarrow B$. Similarly, since $|B|=|C|$ we know that there is at least one bijection $g: B \rightarrow C$.
Consider the function $g \circ f: A \rightarrow C$. Since g and f are bijections and the composition of two bijections is a bijection, we see that $g \circ f$ is a bijection from A to C. Thus $|A|=|C|$, as required.

Cantor's Theorem Revisited

Cantor's Theorem

- In our very first lecture, we sketched out a proof of Cantor's theorem, which says that

If S is a set, then $|S|<|\wp(S)|$.

- Today, we finally have the tools to more formally prove that result, or more specifically, this version:

If S is a set, then $|S| \neq|\wp(S)|$.

Bijection and Cardinality

- If we think this is true for some set S :

$$
|S| \neq|\wp(S)|
$$

- Then we're saying we don't believe that there exists a bijection between \boldsymbol{S} and $\wp(S)$.
- Let's explore one example function from \boldsymbol{S} to $\wp(\boldsymbol{S})$.
- (remember: we aren't expecting that this can be a bijection)

Bijection and Cardinality

- Ok we found one function $f: S \rightarrow \wp(S)$, where $f(x)=\{x\}$, and showed that this function is not bijective.
- Question: Have we proved this?

$$
|S| \neq|\wp(S)|
$$

- Why or why not?

Bijection and Cardinality

- Ok we found one function $f: S \rightarrow \wp(S)$, where $f(x)=\{x\}$, and showed that this function is not bijective.
- Question: Have we proved this?

$$
|S| \neq|\wp(S)|
$$

- Answer: No, because there could be some other function that is bijective.
- Remember our coins/fruit slide from earlier!

If S is a set, then $|S| \neq|\wp(S)|$.

- What would be a rigorous way to approach this?

1) Show that the function $f: S \rightarrow \wp(S)$, where $f(x)=\{x\}$ is not bijective.
2) Pick an arbitrary function $f: S \rightarrow \xi(\mathrm{~S})$, and show f is not injective.
3) Pick an arbitrary function $f: S \rightarrow \xi(\mathrm{~S})$, and show f is not surjective.

The Roadmap

- We're going to prove this statement: If S is a set, then $|S| \neq|\wp(S)|$.
- Here's how this will work:
- Pick an arbitrary set S.
- Pick an arbitrary function $f: S \rightarrow \wp(S)$.
- Show that f is not surjective using a diagonal argument.
- Conclude that there are no bijections from S to $\wp(S)$.
- Conclude that $|S| \neq|\wp(S)|$.

The Roadmap

We're going to prove this statement: If S is a set, then $|S| \neq|\wp(S)|$.
Here's how this will work:
Pick an arbitrary set S.
Pick an arbitrary function $f: S \rightarrow \wp(S)$.

- Show that f is not surjective using a diagonal argument.
Conclude that there are no bijections from S to $\wp(S)$.
Conclude that $|S| \neq|\wp(S)|$.

For this proof, we pick an arbitrary function $f: S \rightarrow \wp(S)$. We don't know what flooks like, so this drawing just has some "random" values as examples of what the f might look like.

This is a drawing of what our arbitrary function $f: S \rightarrow \wp(S)$ might look like.

The Diagonal Set

- For any set S and function $f: S \rightarrow \wp(S)$, we can define a set D as follows:

$$
D=\{x \in S \mid x \notin f(x)\}
$$

("The set of all elements x where x is not an element of the set $\left.f(x) .{ }^{\prime \prime}\right)$

- This is a formalization of the set we found in the previous picture.
- Using this choice of D, we can formally prove that no function $f: S \rightarrow \wp(S)$ is a bijection.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D . \tag{3}
\end{equation*}
$$

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D \tag{3}
\end{equation*}
$$

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq\left.\right|_{\wp(S)} \mid$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D . \tag{3}
\end{equation*}
$$

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D \tag{3}
\end{equation*}
$$

This is impossible.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D . \tag{3}
\end{equation*}
$$

This is impossible. We have reached a contradiction, so our assumption must have been wrong.

Theorem: If S is a set, then $|S| \neq|\wp(S)|$.
Proof: Let S be an arbitrary set. We will prove that $|S| \neq|\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.
Starting with f, we define the set

$$
\begin{equation*}
D=\{x \in S \mid x \notin f(x)\} . \tag{1}
\end{equation*}
$$

We will show that there is no $y \in S$ such that $f(y)=D$. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that $f(y)=D$. By the definition of D, we know that

$$
\begin{equation*}
y \in D \text { if and only if } y \notin f(y) . \tag{2}
\end{equation*}
$$

By assumption, $f(y)=D$. Combined with (2), this tells us

$$
\begin{equation*}
y \in D \text { if and only if } y \notin D \tag{3}
\end{equation*}
$$

This is impossible. We have reached a contradiction, so our assumption must have been wrong. So f is not surjective, which is what we wanted to show.

Next Time

- Graphs
- A ubiquitous, expressive, and flexible abstraction!
- Properties of Graphs
- Building high-level structures out of lowerlevel ones!

