Cardinality

Outline for Today

- **Bijections**
 - A key and important class of functions.
- Cardinality, Formally
 - What does it mean for two sets to have the same size?
- Cantor's Theorem, Formally
 - Revisiting our Day 1 lecture.
 - *Further exploration:* On the problem set, you'll explore the proof in more depth and see some other applications.
 - *Further reading:* Guide to Cantor's Theorem, on the course website

Bijections

Injections and Surjections

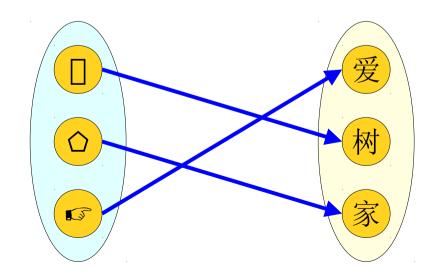
- An injective function associates *at most* one element of the domain with each element of the codomain.
- A surjective function associates *at least* one element of the domain with each element of the codomain.

Injections and Surjections

- An injective function associates *at most* one element of the domain with each element of the codomain.
- A surjective function associates *at least* one element of the domain with each element of the codomain.
- New! A bijective function associates
 exactly one element of the domain with each element of the codomain.

Bijections

- A *bijection* is a function that is both injective and surjective.
- Intuitively, if $f : A \rightarrow B$ is a bijection, then f represents a way of pairing off elements of A and elements of B.



Cardinality Revisited

Cardinality

- Recall (from our first lecture!) that the *cardinality* of a set is the number of elements it contains.
- If S is a set, we denote its cardinality by |S|.

- Saying two finite sets are equal relies on a definition of "equal" for integers.
 - |{1,2}| = 2 = 2 = |{3,6}| is true, because = is defined for integers
- Defining "equal" for infinite set cardinality <u>can't rely on the integer "=" operator</u>, because infinite values are not integers.

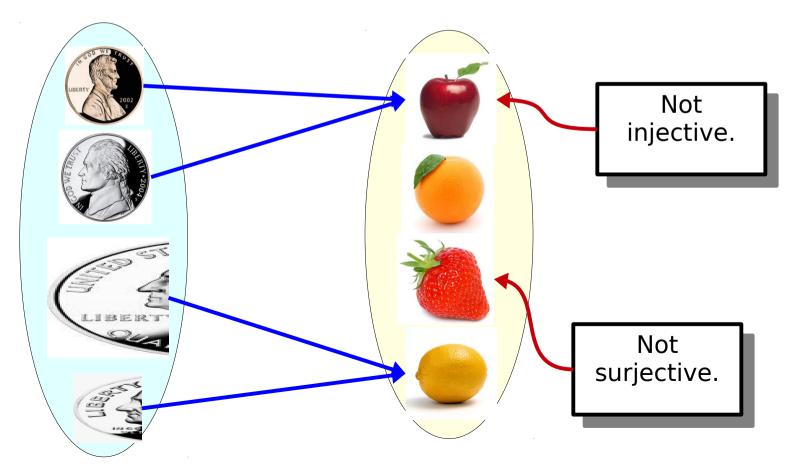
• **Intuition:** Two sets have the same cardinality if there's a way to pair off their elements.

• Here is the formal definition of what it means for two sets to have the same cardinality:

|S| = |T| if there exists a bijection $f: S \rightarrow T$

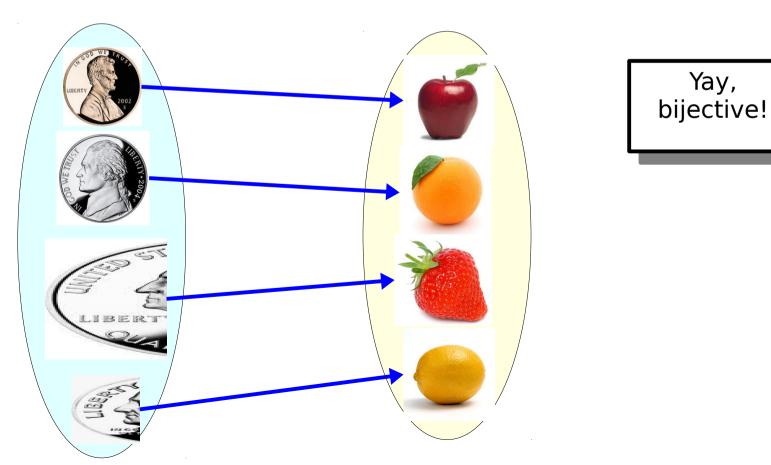
- Here is the formal definition of what it means for two sets to have the same cardinality:
 - |S| = |T| if there exists a bijection $f: S \rightarrow T$

- Here is the formal definition of what it means for two sets to have the same cardinality:
 - |S| = |T| if there exists a bijection $f: S \rightarrow T$



- Here is the formal definition of what it means for two sets to have the same cardinality:
 - |S| = |T| if there exists a bijection $f: S \rightarrow T$

Yay,



Fun with Cardinality

Terminology Refresher

- Let *a* and *b* be real numbers where $a \leq b$.
- The notation **[***a*, *b***]** denotes the set of all real numbers between *a* and *b*, inclusive.

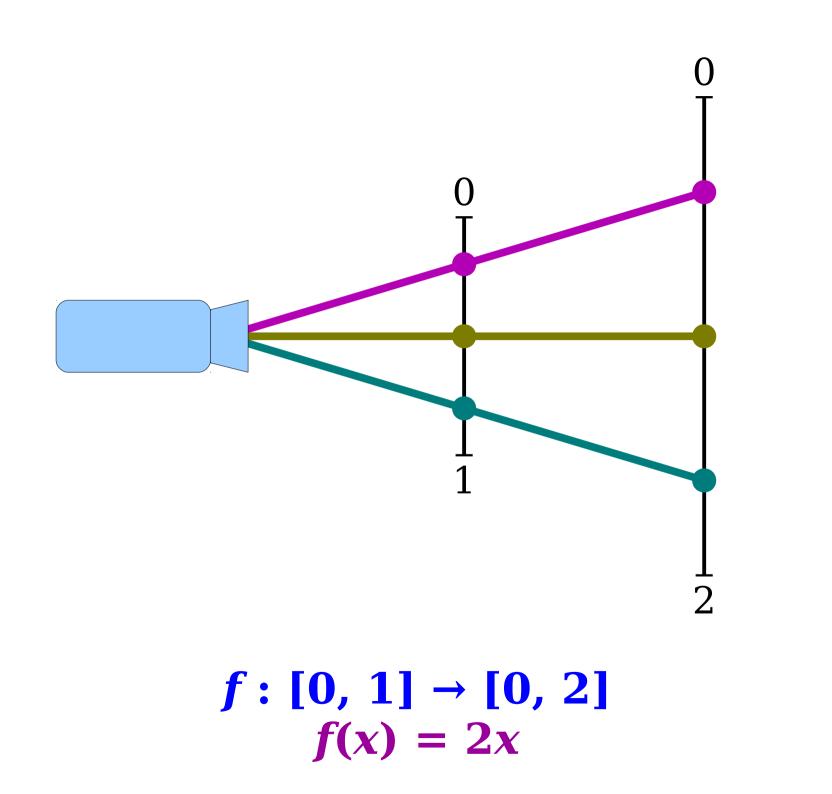
 $[a, b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$

• The notation (*a*, *b*) denotes the set of all real numbers between *a* and *b*, exclusive.

 $(a, b) = \{ x \in \mathbb{R} \mid a < x < b \}$

Consider the sets [0, 1] and [0, 2].

How do their cardinalities compare?



Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that f is a well-defined function.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any $x \in [0, 1]$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that *f* is injective.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that *f* is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that *f* is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that *f* is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y. Let $x = y/_2$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$. Moreover, notice that

$$f(x) = 2x$$

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$. Moreover, notice that

$$f(x) = 2x = 2(y/_2)$$

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$. Moreover, notice that

$$f(x) = 2x = 2(y/2) = y$$

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$. Moreover, notice that

$$f(x) = 2x = 2(y/_2) = y,$$

so f(x) = y, as required.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.

Next, we'll show that f is injective. Pick any $x_1, x_2 \in [0, 1]$ where $f(x_1) = f(x_2)$. We will show that $x_1 = x_2$. To see this, notice that since $f(x_1) = f(x_2)$, we see that $2x_1 = 2x_2$, which in turn tells us that $x_1 = x_2$, as required.

Finally, we will show that f is surjective. To do so, consider any $y \in [0, 2]$. We'll show that there is some $x \in [0, 1]$ where f(x) = y.

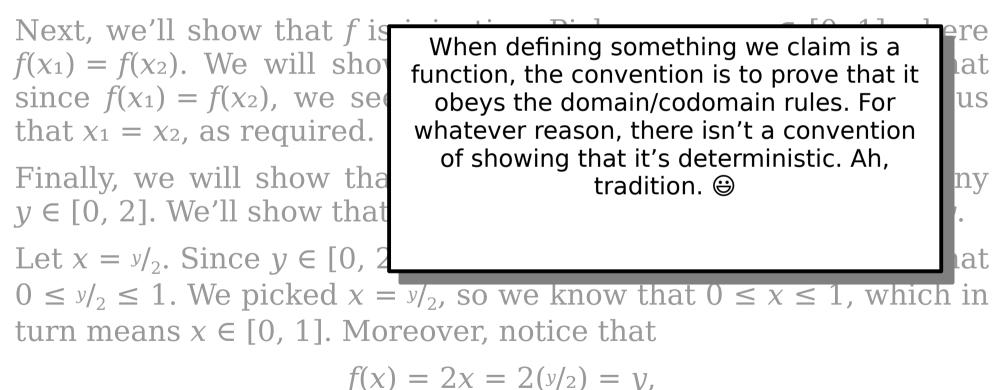
Let $x = y/_2$. Since $y \in [0, 2]$, we know $0 \le y \le 2$, and therefore that $0 \le y/_2 \le 1$. We picked $x = y/_2$, so we know that $0 \le x \le 1$, which in turn means $x \in [0, 1]$. Moreover, notice that

$$f(x) = 2x = 2(y/2) = y$$
,

so f(x) = y, as required.

Proof: Consider the function $f : [0, 1] \rightarrow [0, 2]$ defined as f(x) = 2x. We will prove that f is a bijection.

First, we will show that *f* is a well-defined function. Choose any $x \in [0, 1]$. This means that $0 \le x \le 1$, so we know that $0 \le 2x \le 2$. Consequently, we see that $0 \le f(x) \le 2$, so $f(x) \in [0, 2]$.



so f(x) = y, as required.

Some Properties of Cardinality

Theorem: For any set A, we have |A| = |A|.

Proof: Consider any set A, and let $f : A \rightarrow A$ be the function defined as f(x) = x. We will prove that f is a bijection.

First, we'll show that *f* is a well-defined function. To see this, note that for any $x \in A$, we have $f(x) = x \in A$, as needed.

Next, we'll show that *f* is injective. Pick any $x_1, x_2 \in A$ where $f(x_1) = f(x_2)$. We need to show that $x_1 = x_2$. Since $f(x_1) = f(x_2)$, we see by definition of *f* that $x_1 = x_2$, as required.

Finally, we'll show that *f* is surjective. Consider any $y \in A$. We will prove that there is some $x \in A$ where f(x) = y. Pick x = y. Then $x \in A$ (since $y \in A$) and f(x) = x = y, as required.

Theorem: If A, B, and C are sets where |A| = |B| and |B| = |C|, then |A| = |C|.

Proof: Consider any sets *A*, *B*, and *C* where |A| = |B| and |B| = |C|. We need to prove that |A| = |C|. To do so, we need to show that there is a bijection from *A* to *C*.

Since |A| = |B|, we know that there is a some bijection $f : A \to B$. Similarly, since |B| = |C| we know that there is at least one bijection $g : B \to C$.

Consider the function $g \circ f : A \to C$. Since g and f are bijections and the composition of two bijections is a bijection, we see that $g \circ f$ is a bijection from A to C. Thus |A| = |C|, as required.

Cantor's Theorem Revisited

Cantor's Theorem

 In our very first lecture, we sketched out a proof of *Cantor's theorem*, which says that

If S is a set, then $|S| < |\wp(S)|$.

 Today, we finally have the tools to more formally prove that result, or more specifically, this version:

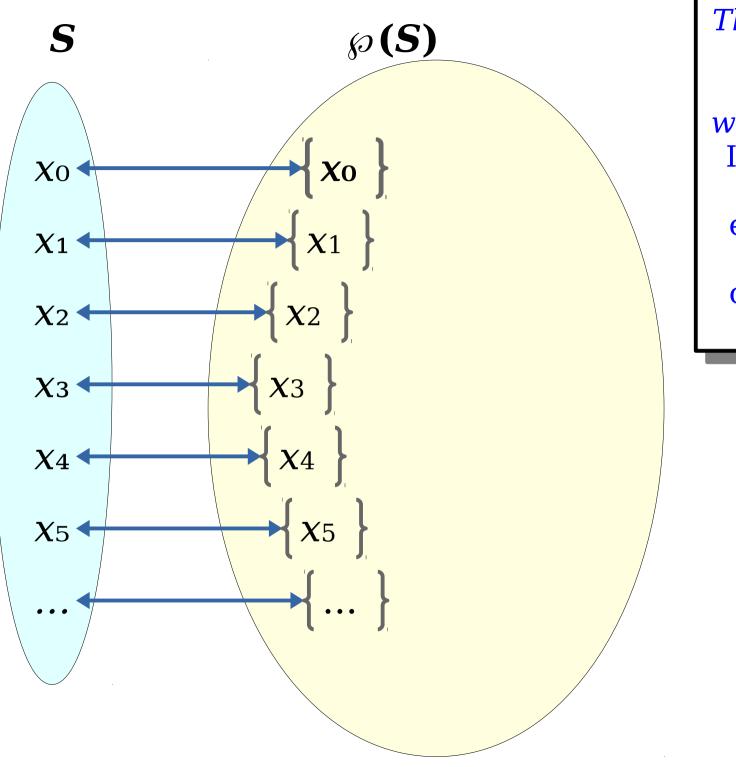
If S is a set, then $|S| \neq |\wp(S)|$.

Bijection and Cardinality

• If we think this is true for some set S:

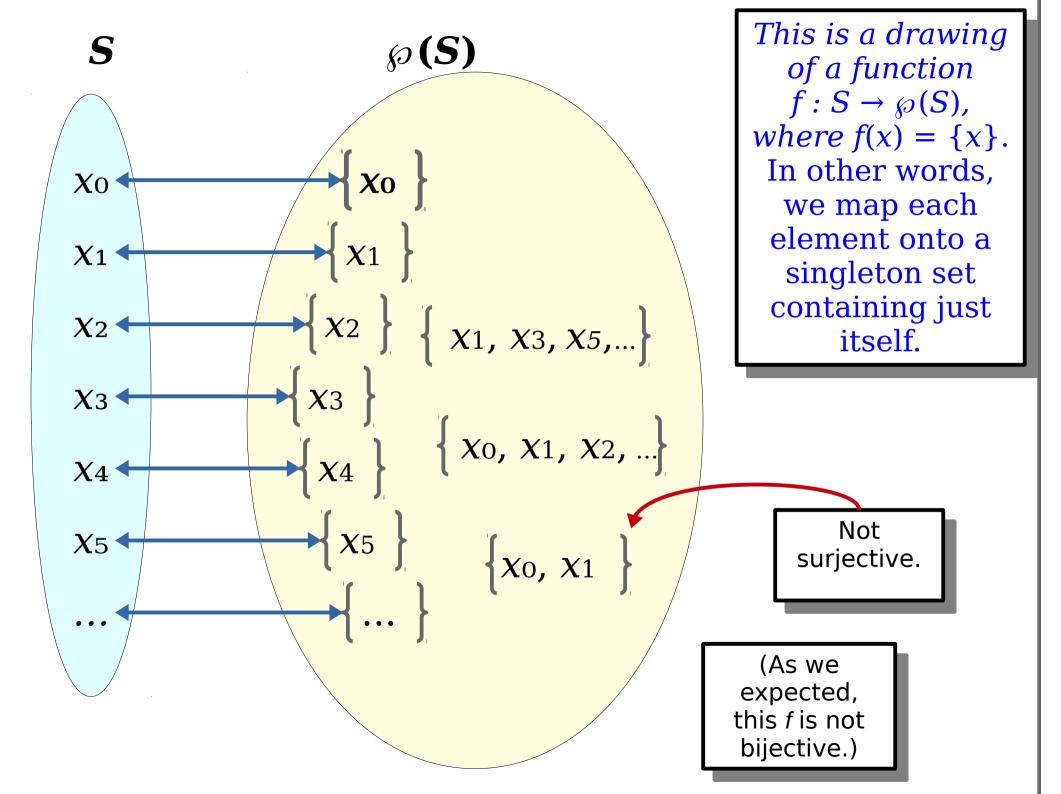
|S| ≠ |℘(S)|

- Then we're saying we don't believe that there exists a bijection between S and $\wp(S)$.
- Let's explore one example function from S to S(S).
 - (remember: we aren't expecting that this can be a bijection)



This is a drawing of a function $f: S \rightarrow \wp(S),$ where $f(x) = \{x\}.$ In other words, we map each element onto a singleton set containing just itself.

> This function is injective.



Bijection and Cardinality

- Ok we found one function $f: S \to \wp(S)$, where $f(x) = \{x\}$, and showed that this function is not bijective.
- **Question:** Have we proved this?

|S| ≠ |℘(S)|

• Why or why not?

Bijection and Cardinality

- Ok we found one function $f: S \to \mathcal{O}(S)$, where $f(x) = \{x\}$, and showed that this function is not bijective.
- **Question:** Have we proved this?

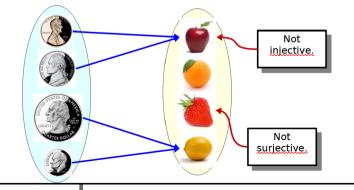
|S| ≠ |℘(S)|

- **Answer:** No, because there could be some other function that is bijective.
- Remember our coins/fruit slide from earlier!

Comparing Cardinalities

• Here is the formal definition of what it means for two sets to have the same <u>cardinality</u>:

|S| = |T| if there exists a bijection $f: S \to T$



If S is a set, then $|S| \neq |\wp(S)|$.

- What would be a rigorous way to approach this?
 - 1) Show that the function $f: S \to \mathcal{O}(S)$, where $f(x) = \{x\}$ is not bijective.
 - 2) Pick an arbitrary function $f: S \to \mathcal{O}(S)$, and show f is not injective.
 - 3) Pick an arbitrary function $f: S \to \mathcal{G}(S)$, and show f is not surjective.

The Roadmap

• We're going to prove this statement:

If S is a set, then $|S| \neq |\wp(S)|$.

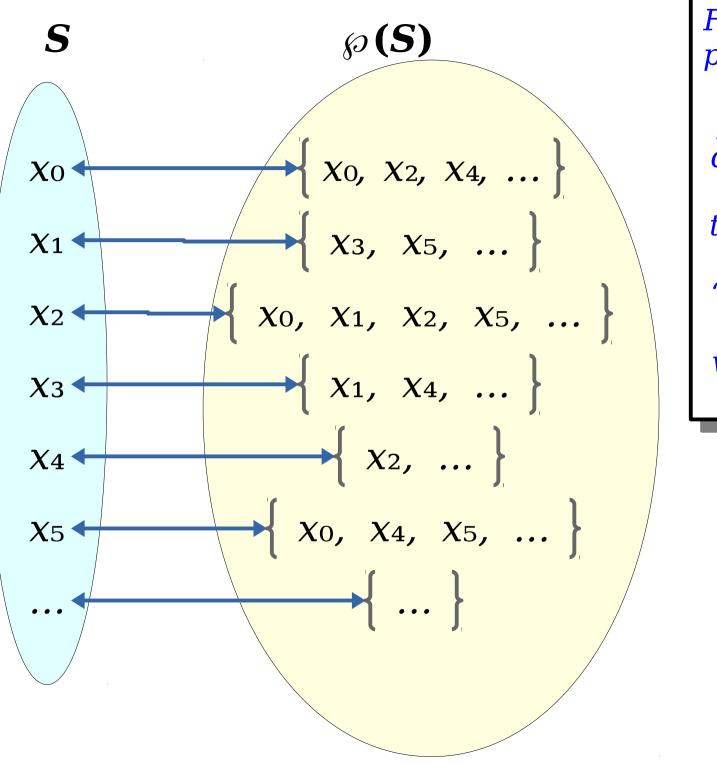
- Here's how this will work:
 - Pick an arbitrary set S.
 - Pick an **arbitrary** function $f: S \to \wp(S)$.
 - Show that *f* is not surjective using a diagonal argument.
 - Conclude that there are no bijections from S to $\wp(S)$.
 - Conclude that $|S| \neq |\wp(S)|$.

The Roadmap

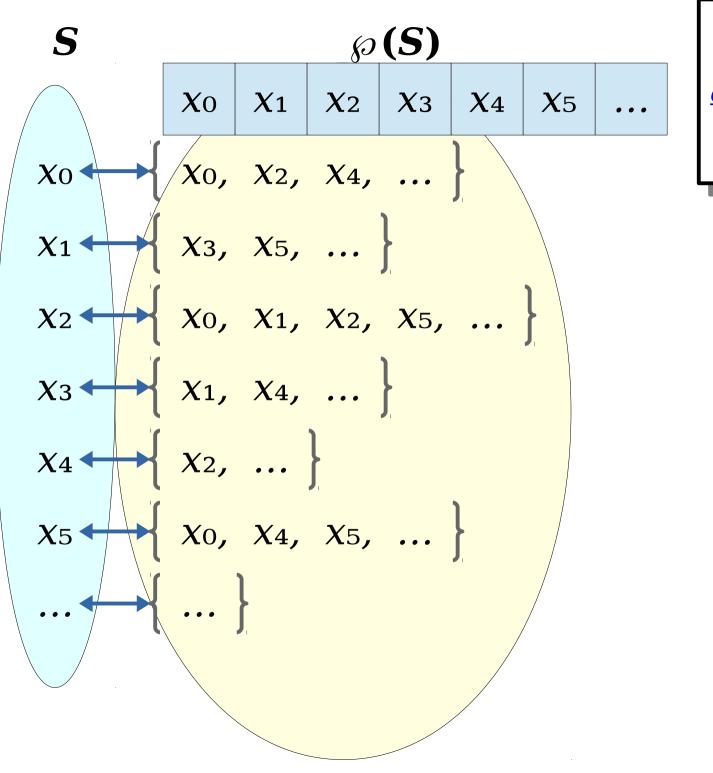
We're going to prove this statement: If S is a set, then $|S| \neq |\wp(S)|$. Here's how this will work: Pick an arbitrary set S. Pick an **arbitrary** function $f : S \rightarrow \wp(S)$.

• Show that *f* is not surjective using a diagonal argument.

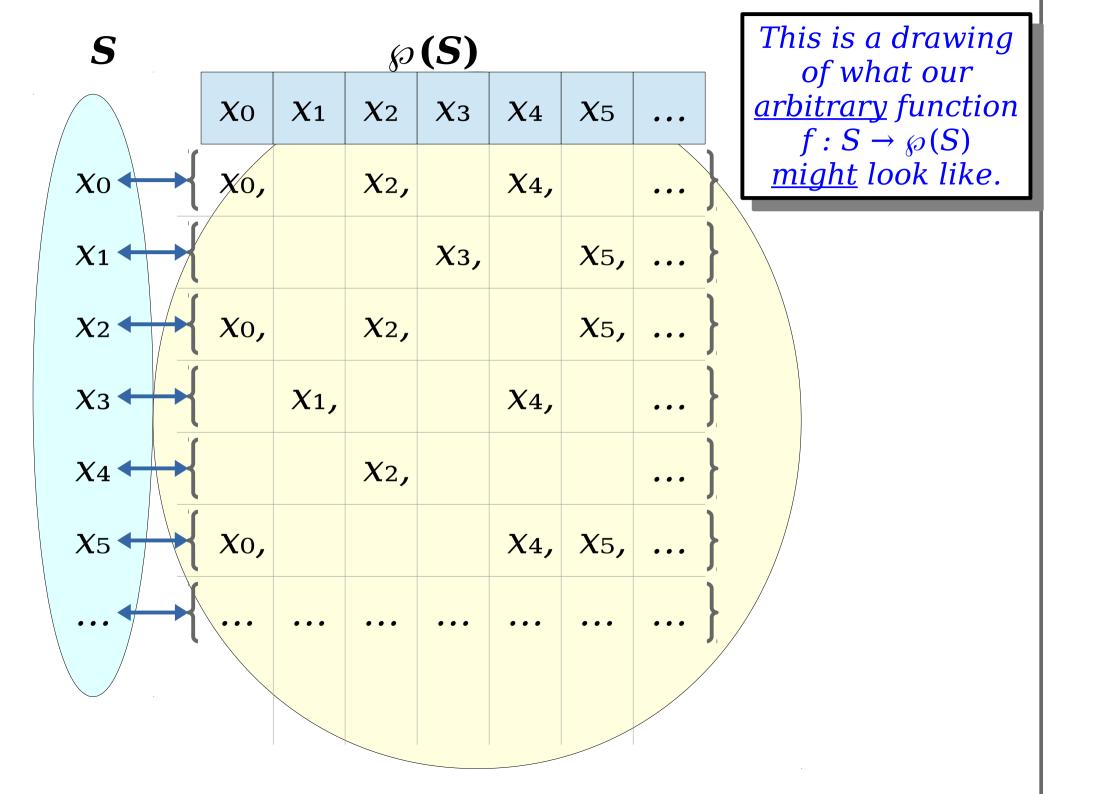
Conclude that there are no bijections from S to $\wp(S)$. Conclude that $|S| \neq |\wp(S)|$.

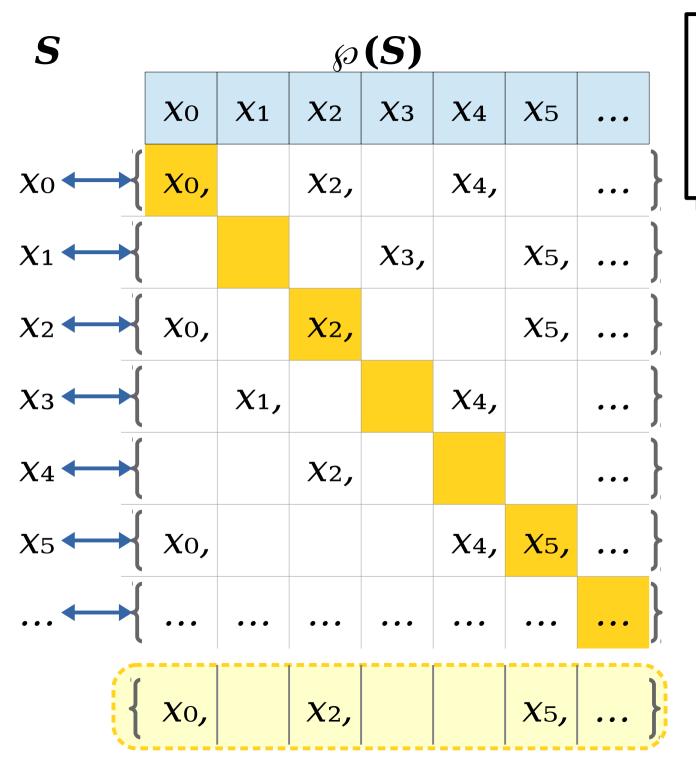


For this proof, we pick an **arbitrary** function $f: S \to \wp(S)$. We don't know what f looks like, so this drawing just has some *"random" values* as <u>examples</u> of what the f <u>might</u> look like.

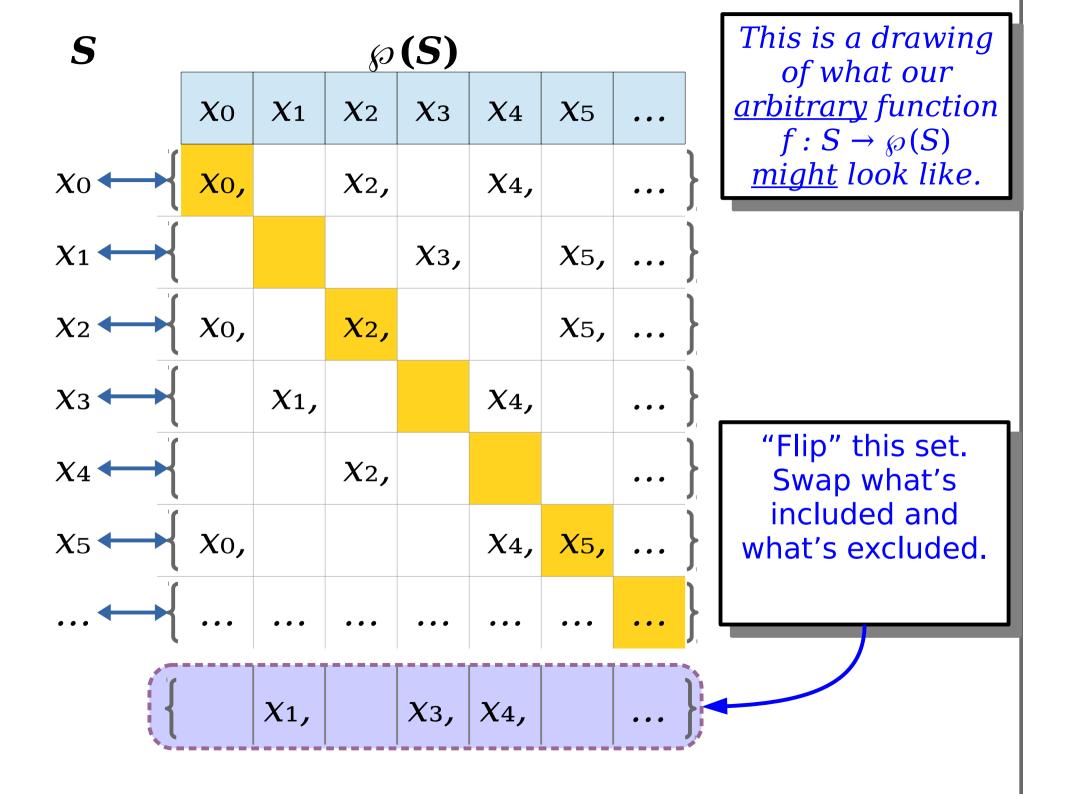


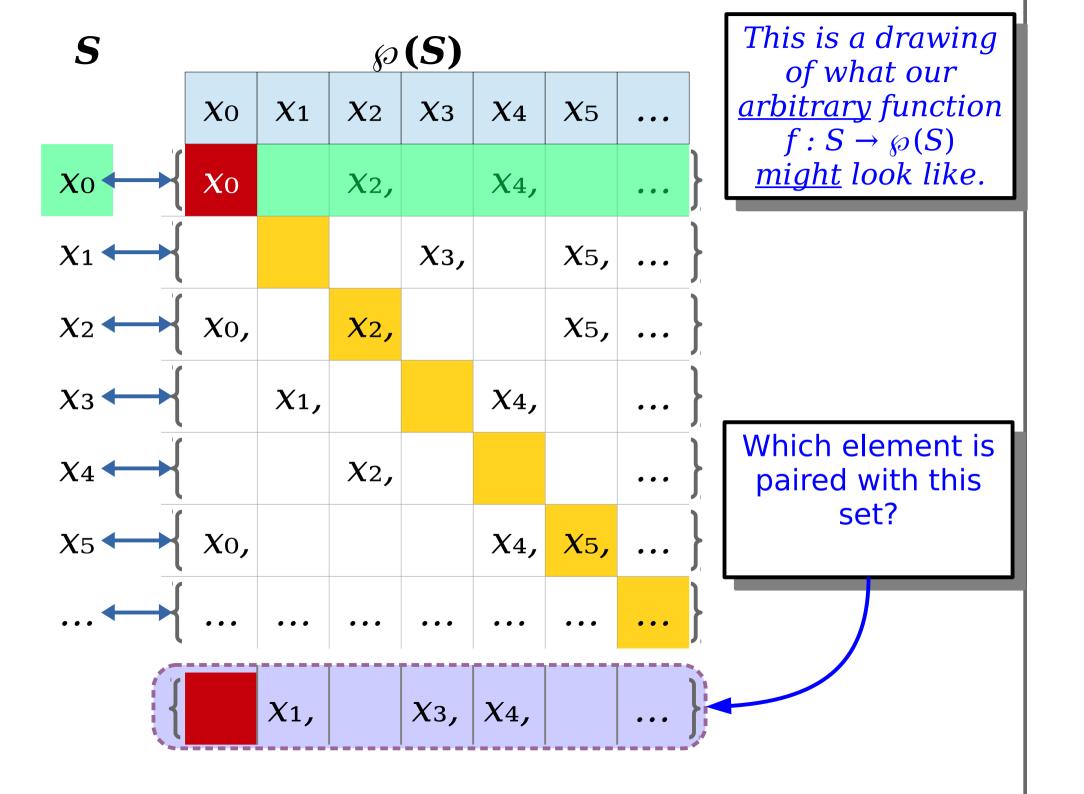
This is a drawing of what our <u>arbitrary</u> function $f: S \rightarrow \wp(S)$ <u>might</u> look like.

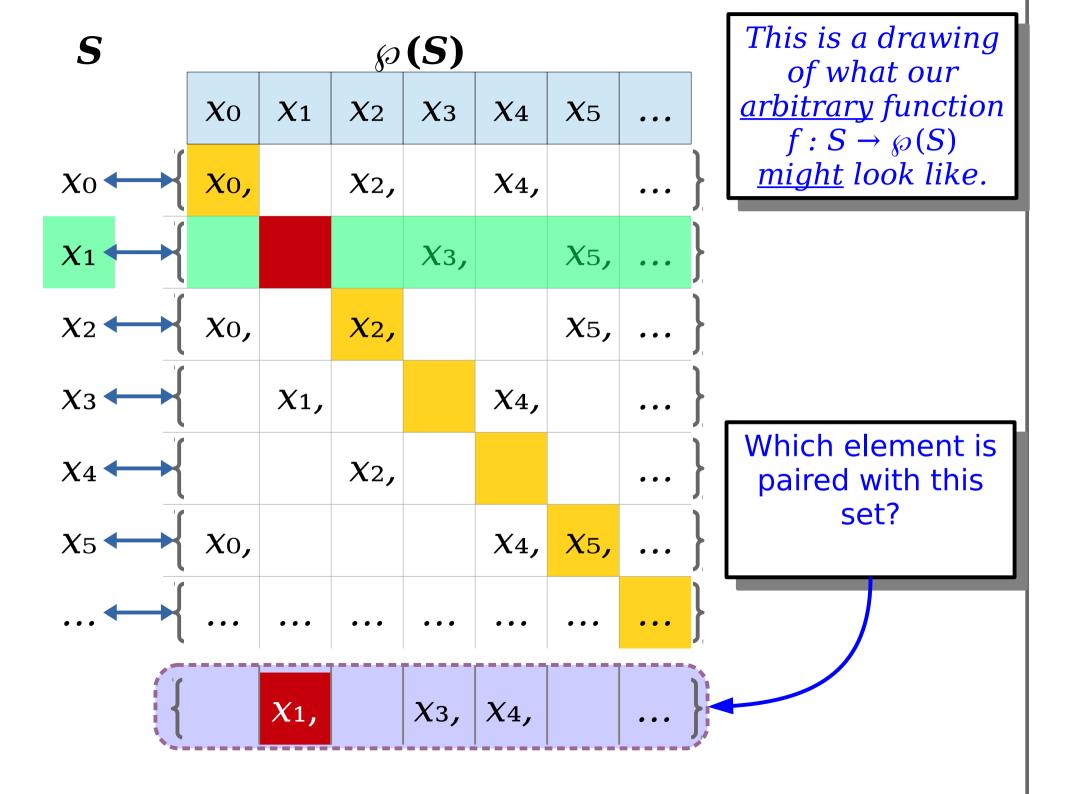


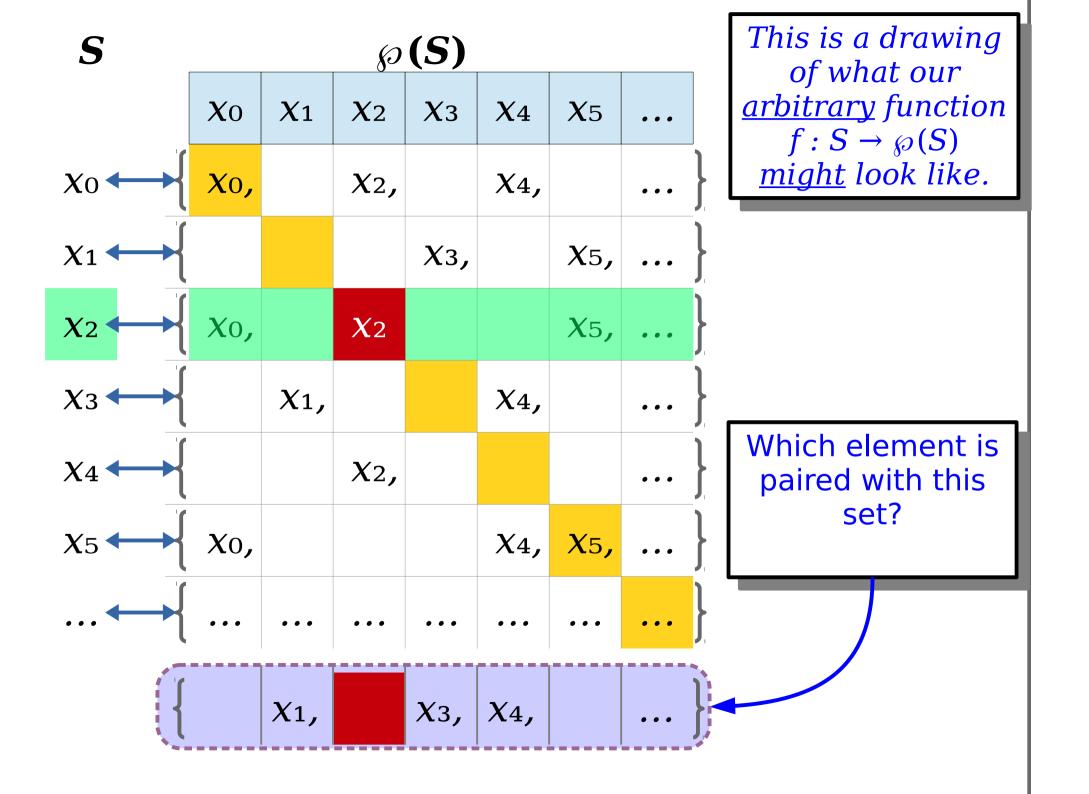


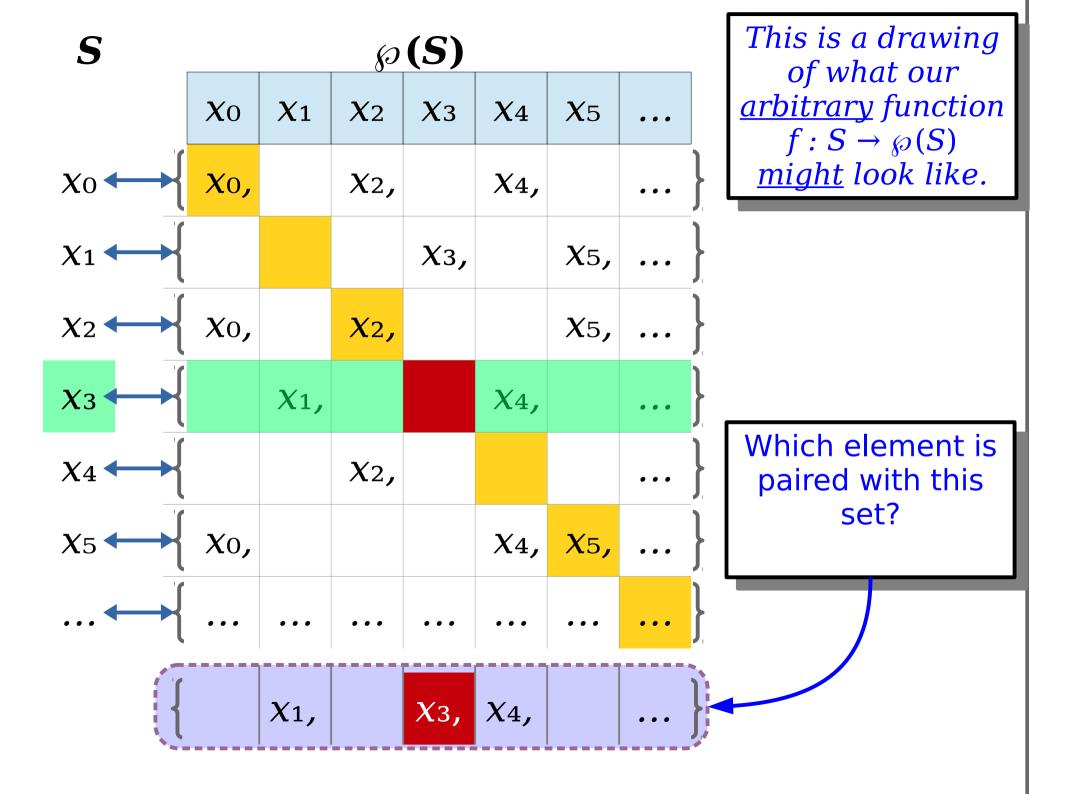
This is a drawing of what our arbitrary function $f: S \rightarrow \wp(S)$ might look like.

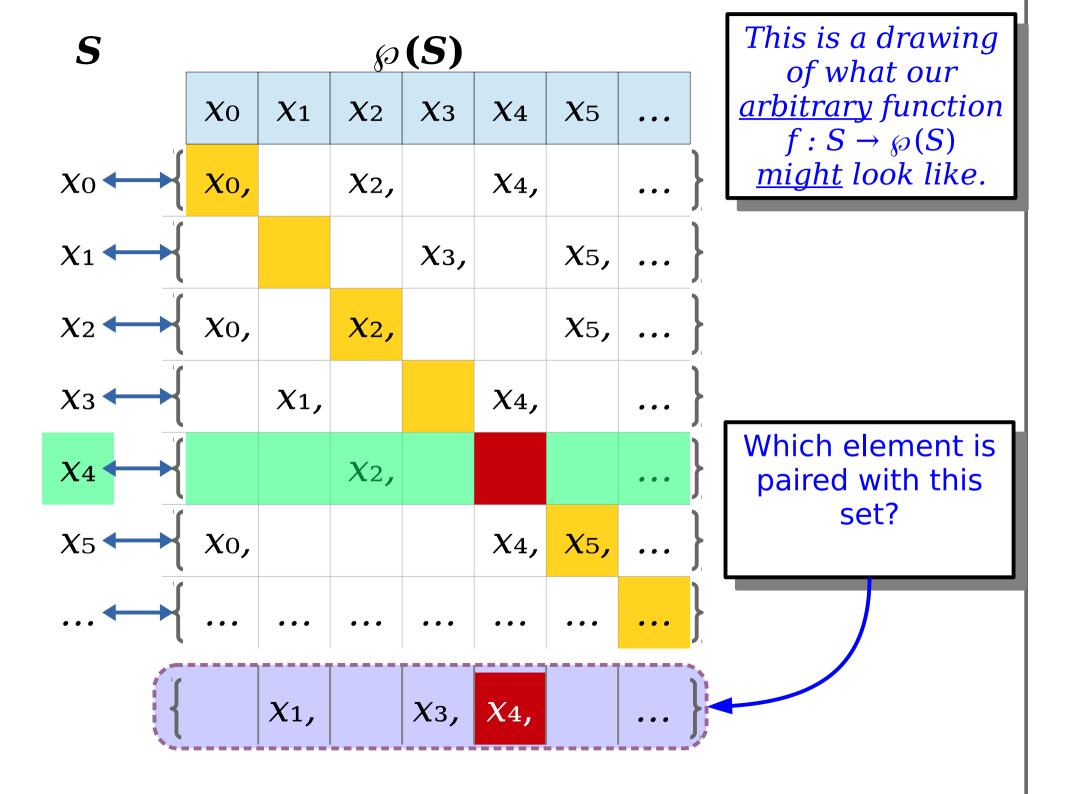


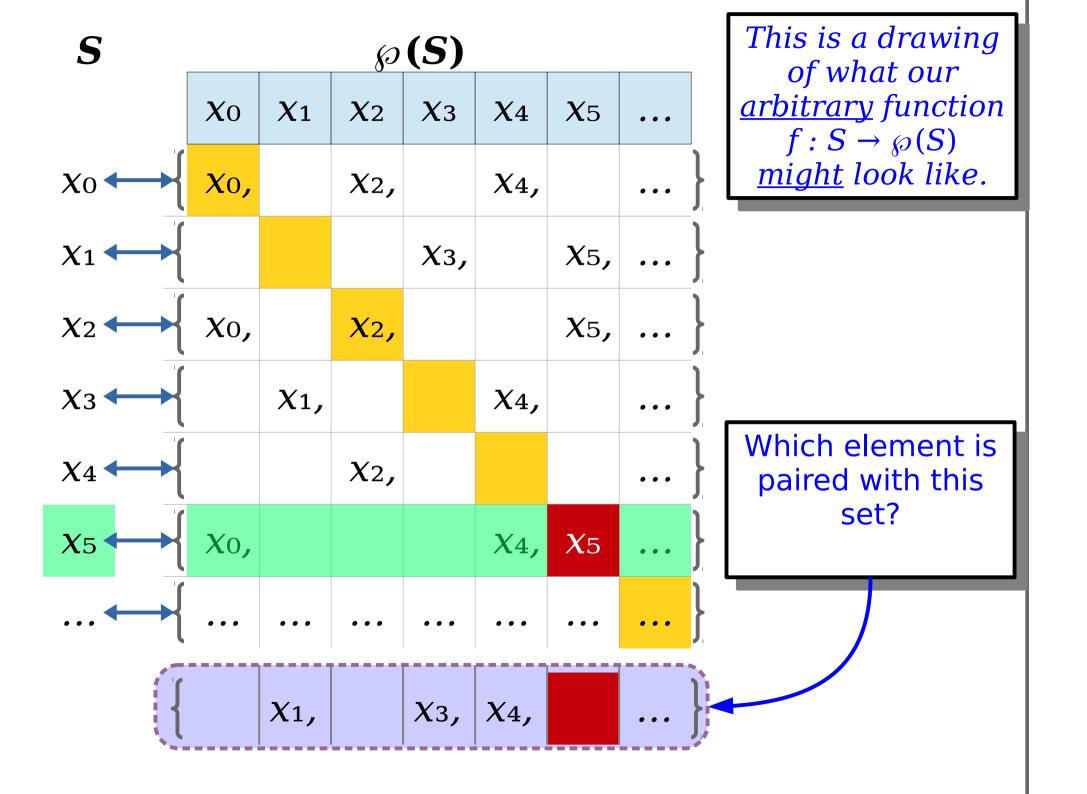


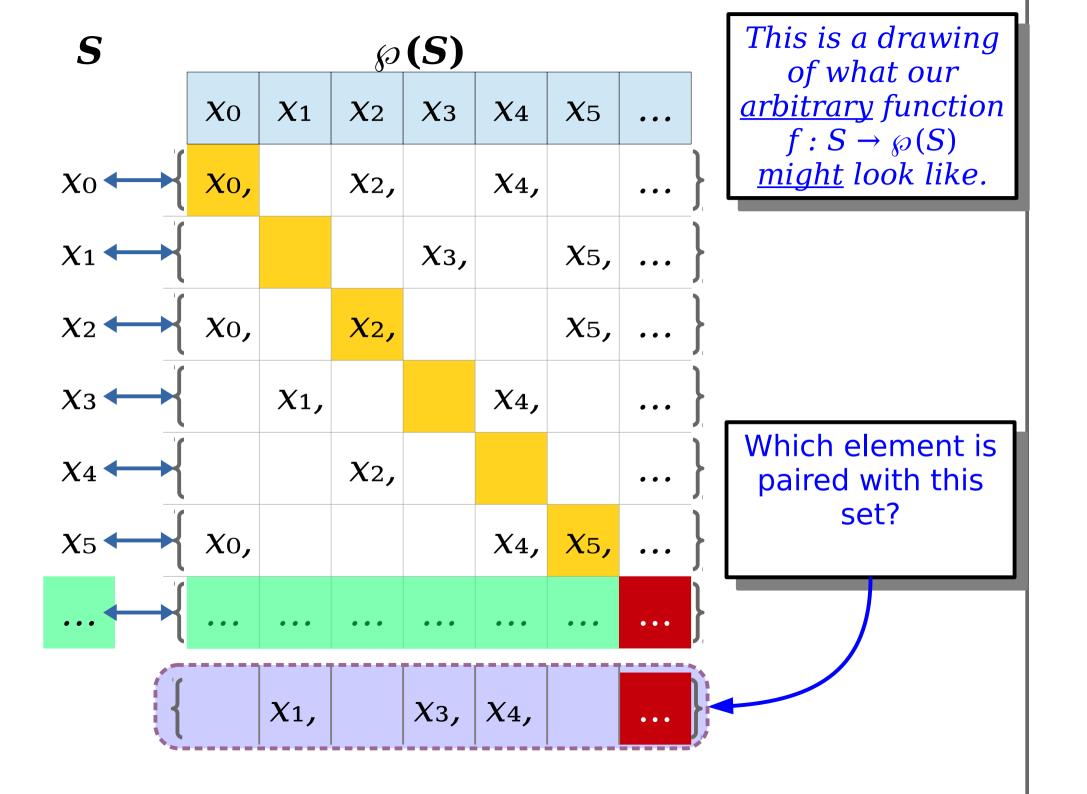


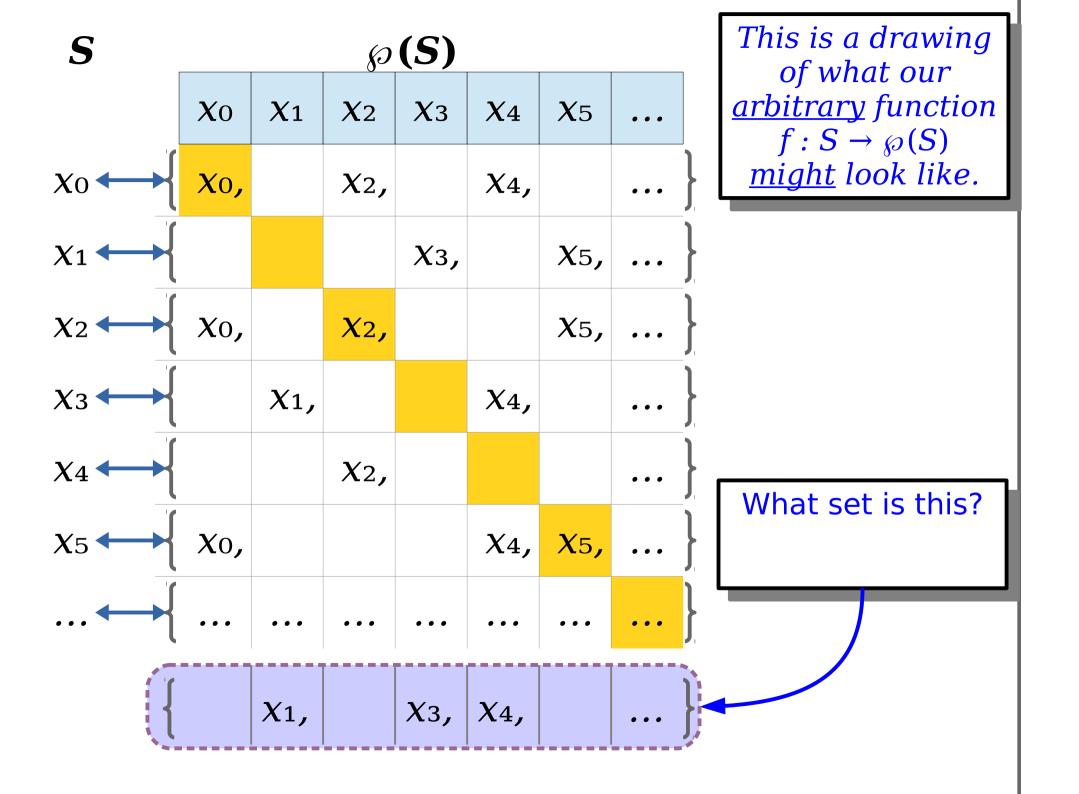


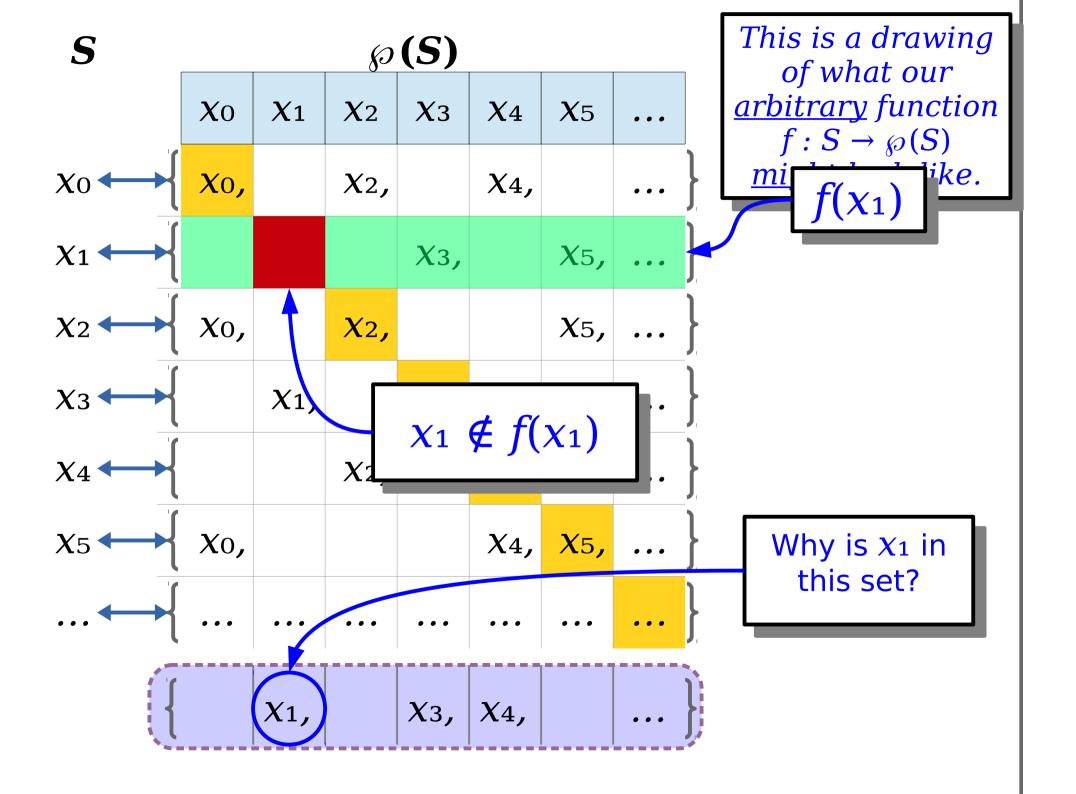


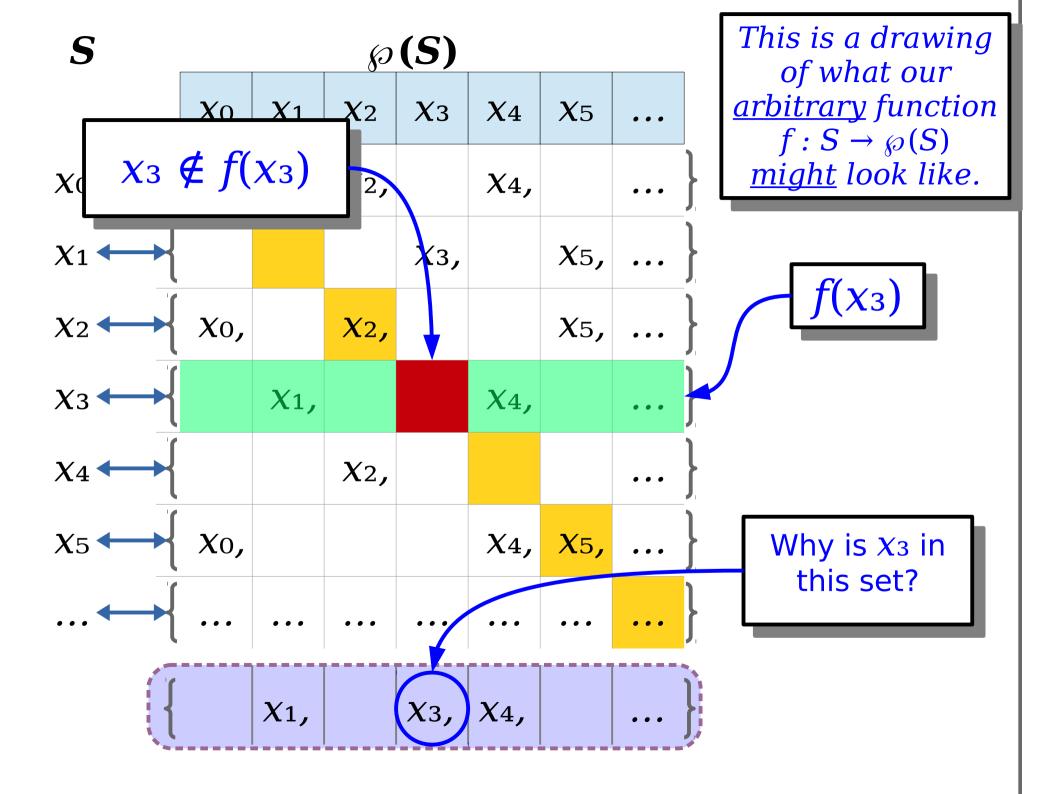


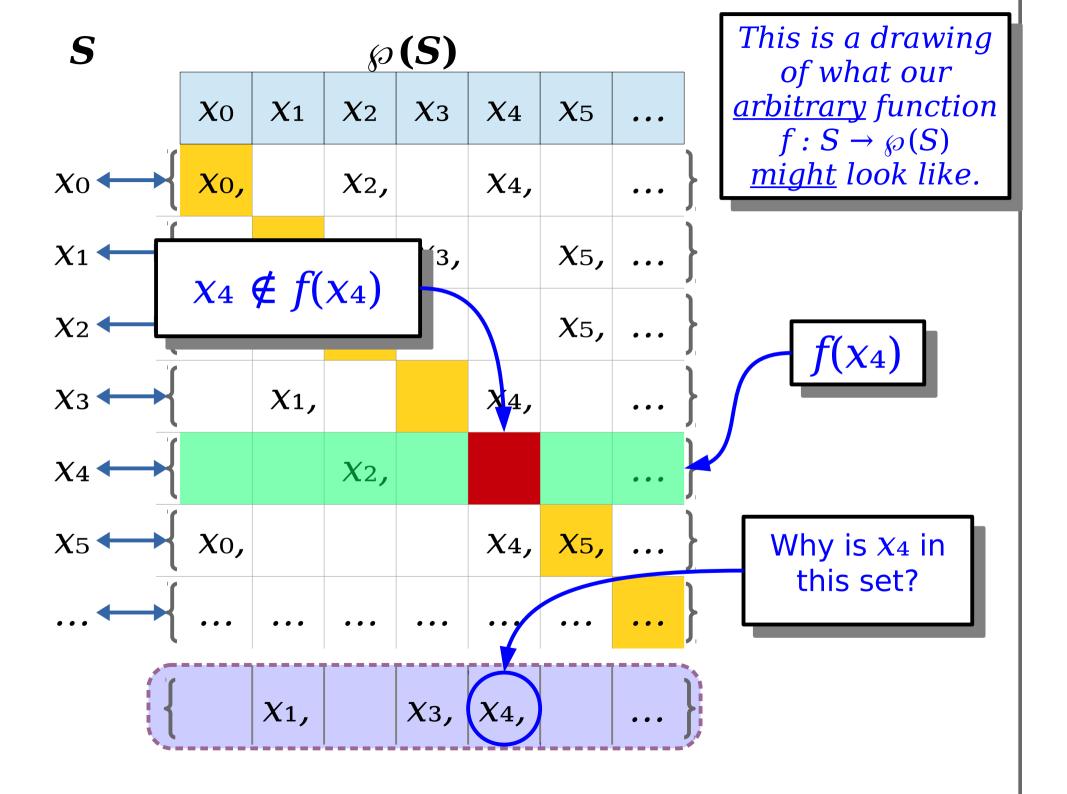


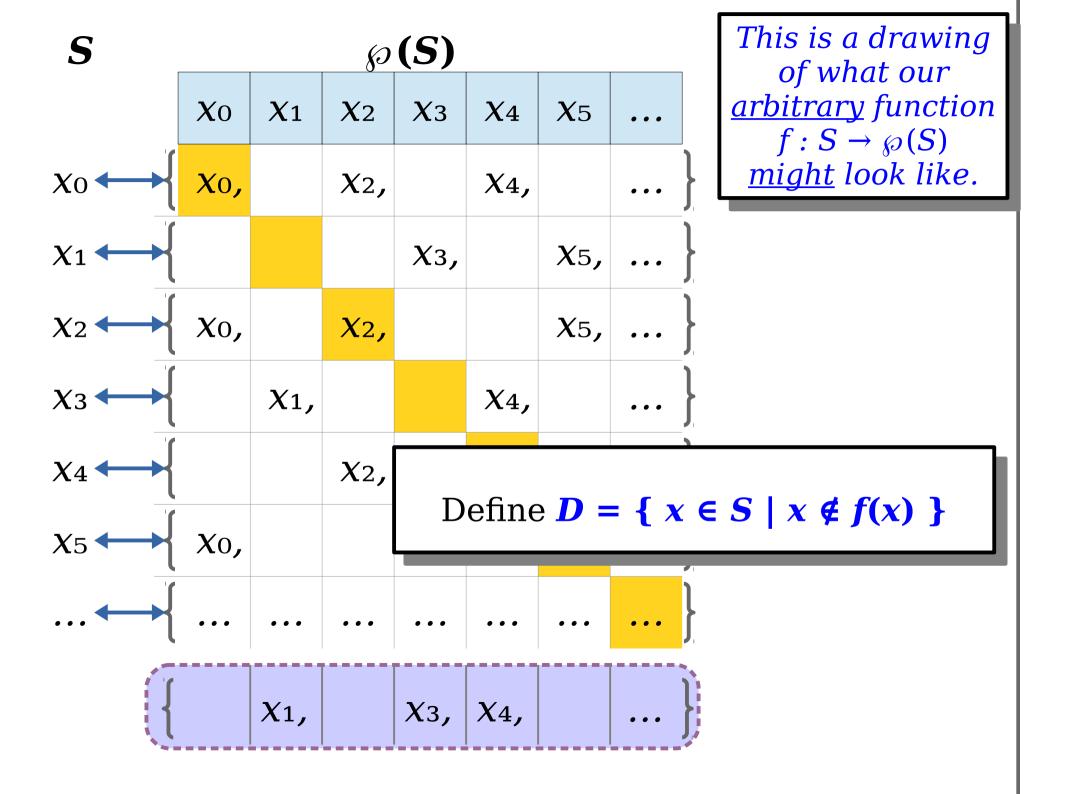












The Diagonal Set

• For any set S and function $f: S \to \wp(S)$, we can define a set D as follows:

 $D = \{ x \in S \mid x \notin f(x) \}$

("The set of all elements x where x is not an element of the set f(x).")

- This is a formalization of the set we found in the previous picture.
- Using this choice of D, we can formally prove that no function $f: S \to \wp(S)$ is a bijection.

Theorem: If S is a set, then $|S| \neq |_{\mathcal{D}}(S)|$. **Proof:** Let S be an arbitrary set.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$.

Theorem: If S is a set, then $|S| \neq |\wp(S)|$.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathcal{D}}(S)|$ by showing that there are no bijections from S to $_{\mathcal{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathcal{D}}(S)$.

Theorem: If S is a set, then $|S| \neq |\wp(S)|$.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

 $y \in D$ if and only if $y \notin f(y)$. (2)

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

$$y \in D$$
 if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathcal{D}}(S)|$ by showing that there are no bijections from S to $_{\mathcal{D}}(S)$. To do so, choose an arbitrary function $f: S \rightarrow _{\mathcal{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

$$y \in D$$
 if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

$$y \in D$$
 if and only if $y \notin D$. (3)

Theorem: If S is a set, then $|S| \neq |\wp(S)|$.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |\wp(S)|$ by showing that there are no bijections from S to $\wp(S)$. To do so, choose an arbitrary function $f: S \rightarrow \wp(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

 $y \in D$ if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

 $y \in D$ if and only if $y \notin D$. (3)

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathcal{D}}(S)|$ by showing that there are no bijections from S to $_{\mathcal{D}}(S)$. To do so, choose an arbitrary function $f: S \rightarrow _{\mathcal{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

$$y \in D$$
 if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

$$y \in D$$
 if and only if $y \notin D$. (3)

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

$$y \in D$$
 if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

$$y \in D$$
 if and only if $y \notin D$. (3)

This is impossible.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathscr{D}}(S)|$ by showing that there are no bijections from S to $_{\mathscr{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathscr{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

$$y \in D$$
 if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

$$y \in D$$
 if and only if $y \notin D$. (3)

This is impossible. We have reached a contradiction, so our assumption must have been wrong.

Proof: Let S be an arbitrary set. We will prove that $|S| \neq |_{\mathcal{D}}(S)|$ by showing that there are no bijections from S to $_{\mathcal{D}}(S)$. To do so, choose an arbitrary function $f: S \to _{\mathcal{D}}(S)$. We will prove that f is not surjective.

Starting with *f*, we define the set

$$D = \{ x \in S \mid x \notin f(x) \}.$$
(1)

We will show that there is no $y \in S$ such that f(y) = D. To do so, we proceed by contradiction. Suppose that there is some $y \in S$ such that f(y) = D. By the definition of D, we know that

 $y \in D$ if and only if $y \notin f(y)$. (2)

By assumption, f(y) = D. Combined with (2), this tells us

 $y \in D$ if and only if $y \notin D$. (3)

This is impossible. We have reached a contradiction, so our assumption must have been wrong. So f is not surjective, which is what we wanted to show.

Next Time

- Graphs
 - A ubiquitous, expressive, and flexible abstraction!
- **Properties of Graphs**
 - Building high-level structures out of lower-level ones!