

Finite Automata
Part One

Outline for Today
● Computability Theory

● What problems can we solve with a
computer?

● Formal Language Theory
● Stringy thingies.

● Finite Automata
● A very simple model of a computing device.

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

Two Challenges
● Computers are dramatically better now than

they’ve ever been, and that trend continues.
● Writing proofs on formal definitions is hard,

and computers are way more complicated
than sets, graphs, or functions.

● Key Question: How can we prove what
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?

Enter Automata
● An automaton (plural: automata) is a

mathematical model of a computing device.
● It’s an abstraction of a real computer, the way

that graphs are abstractions of social networks,
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of computing

devices, yet
● simple enough that we can reason about them in a

small space.
● They’re also fascinating and useful in their own

rights. More on that later.

What do these automata look like?

A Tale of Two Computers

Why does this
computer…

…“feel” less
powerful than
this one?

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Calculators vs. Desktops
● A calculator has a small amount of memory. A

desktop computer has a large amount of
memory.

● A calculator performs a fixed set of functions. A
desktop is reprogrammable and can run many
different programs.

● These two distinctions account for much of the
difference between “calculator-like” computers and
“desktop-esque” computers.

● In CS103, we’ll first explore “small-memory”
computers in detail, then discuss “large-memory”
computers in depth.

Computing with Finite Memory

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.

How do we model “memory” and
“an algorithm” when they can take

on so many forms?

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?
● These machines receive input

from an external source.
● That input is provided

sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

Modeling Finite Computation
● We will model a finite-

memory computer as a
collection of states linked
by transitions.

● Each state corresponds to
one possible configuration
of the device’s memory.

● Each transition indicates
how memory changes in
response to inputs.

● Some state is designated
as the start state. The
computation begins in that
state.

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

Modeling Finite Computation
● This device processes

strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation
● Once we’ve finished entering

all the characters of our input,
we need to obtain the result of
the computation.

● In general, computers can
produce all sorts of things as
the result of a computation: a
number, a piece of text, etc.

● As a simplifying assumption,
we’ll assume that we just need
to get a single bit of output.
That is, our machines will just
say YES or NO.

● (This can be generalized –
come talk to me after class if
you’re curious how!)

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation
● Some of the states in our

computational device will
be marked as accepting
states. These are denoted
with a double ring.

● If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES)

● If the device does not end
in an accepting state after
seeing all the input, it
rejects the input (says NO).

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

q₃q₃

Modeling Finite Computation
● Try it yourself!

Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Finite Automata
● This type of computational

device is called a finite
automaton (plural: finite
automata).

● Finite automata model
computers where (1)
memory is finite and (2)
the computation produces
as YES/NO answer.

● In other words, finite
automata model
predicates, and do so with
a fixed, finite amount of
memory.

Finite-memory
Computer

input
YES

NO

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Formalizing Things

Strings
● An alphabet is a finite, nonempty set of symbols

called characters.
● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:
a aabaaabbabaaabaaaabbb abbababba

● The empty string has no characters and is denoted ε.
● Calling attention to an earlier point: since all strings

are finite sequences of characters from Σ, you cannot
have a string of infinite length.

Languages
● A language over Σ is a set L consisting of

strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ
when L ⊆ Σ*.

Mathematical Lookalikes
● We now have ∈, ε, Σ, and Σ*. Yikes!
● The symbol ∈ is the element-of relation.
● The symbol ε is the empty string.
● The symbol Σ denotes an alphabet.
● The expression Σ* means “all strings that can

be made from characters in Σ.”
● That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.
● Ever get confused? Just ask!

The Cast of Characters
● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of

Finite Automata and Languages
● Let A be an

automaton that
processes strings
drawn from an
alphabet Σ.

● The language of A,
denoted (ℒ A), is the
set of strings over Σ
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

● Let D be the automaton shown to the
right. It processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

● So (ℒ D) = { w ∈ {a, b}* | w ends in a }.

 ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ start
a, b

 q₁
a, b

q₀

q₀ start a, b

q₁
a, b

q₂

a, b

This means “take this
transition if you see

an a or a b.”

q₀ start
 a, bq₀

What are the languages
of these automata? Answer at

https://cs103.stanford.edu/pollev

(I) (II)

(III)

https://cs103.stanford.edu/pollev

The Story So Far
● A finite automaton is a collection of states joined by

transitions.
● Some state is designated as the start state.
● Some number of states are designated as accepting

states.
● The automaton processes a string by beginning in the

start state and following the indicated transitions.
● If the automaton ends in an accepting state, it accepts

the input.
● Otherwise, the automaton rejects the input.
● The language of an automaton is the set of strings it

accepts.

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start q1

 0

 0, 1

0, 1
0 0 0

The Need for Formalism
● In order to reason about the limits of

what finite automata can and cannot do,
we need to formally specify their behavior
in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs
● A DFA is defined relative to some

alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start q1

 0

 0, 1

0, 1

Designing DFAs
● At each point in its execution, the DFA

can only remember what state it is in.
● DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states means

only finitely many different things the
machine can remember.

Recognizing Languages with DFAs
L = { w ∈ {a, b}*| the number of b's in w is congruent

 to two modulo three }

q0
start q1 q2

b b

a a a

b

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1
start q2

* q3

*

q4
/q0

/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Next Time
● Regular Languages

● An important class of languages.
● Nondeterministic Computation

● Why must computation be linear?
● NFAs

● Automata with Magic Superpowers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

