
  

Finite Automata
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Outline for Today
● Computability Theory

● What problems can we solve with a 
computer?

● Formal Language Theory
● Stringy thingies.

● Finite Automata
● A very simple model of a computing device.



  

Computability Theory



  

What problems can we solve with a computer?

What kind of 
computer?



  

Two Challenges
● Computers are dramatically better now than 

they’ve ever been, and that trend continues.
● Writing proofs on formal definitions is hard, 

and computers are way more complicated 
than sets, graphs, or functions.

● Key Question: How can we prove what 
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?



  

Enter Automata
● An automaton (plural: automata) is a 

mathematical model of a computing device.
● It’s an abstraction of a real computer, the way 

that graphs are abstractions of social networks, 
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of computing 

devices, yet
● simple enough that we can reason about them in a 

small space.
● They’re also fascinating and useful in their own 

rights. More on that later.



  

What do these automata look like?



  

A Tale of Two Computers



  

Why does this 
computer…

…“feel” less 
powerful than 
this one?
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Calculators vs. Desktops
● A calculator has a small amount of memory. A 

desktop computer has a large amount of 
memory. 

● A calculator performs a fixed set of functions. A 
desktop is reprogrammable and can run many 
different programs.

●  These two distinctions account for much of the 
difference between “calculator-like” computers and 
“desktop-esque” computers.

● In CS103, we’ll first explore “small-memory” 
computers in detail, then discuss “large-memory” 
computers in depth.



  

Computing with Finite Memory
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Data stored electronically. 
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.



  

How do we model “memory” and
“an algorithm” when they can take

on so many forms?
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What’s in Common?
● These machines receive input 

from an external source.
● That input is provided 

sequentially, one discrete unit 
at a time.

● Each input causes the device to 
change configuration. This 
change, big or small, is where 
the computation happens.

● Once all input is provided, we 
can read off an answer based 
on the configuration of the 
device.



  

Modeling Finite Computation
● We will model a finite-

memory computer as a 
collection of states linked 
by transitions.

● Each state corresponds to 
one possible configuration 
of the device’s memory.

● Each transition indicates 
how memory changes in 
response to inputs.

● Some state is designated 
as the start state. The 
computation begins in that 
state.
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Modeling Finite Computation
● This device processes 

strings made of characters.
● Each character represents 

some external input to the 
device.

● The string represents the full 
sequence of inputs to the 
device.

● To run this device, we begin 
in our start state and scan 
the input from left to right.

● Each time the machine sees 
a character, it changes 
state by following the 
transition labeled with that 
character.
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Modeling Finite Computation
● Once we’ve finished entering 

all the characters of our input, 
we need to obtain the result of 
the computation.

● In general, computers can 
produce all sorts of things as 
the result of a computation: a 
number, a piece of text, etc.

● As a simplifying assumption, 
we’ll assume that we just need 
to get a single bit of output. 
That is, our machines will just 
say YES or NO.

● (This can be generalized – 
come talk to me after class if 
you’re curious how!)

a b a b ab

q₀ q₁

q₃q₂

a
 
 
a

a
 
 
a

  bb    bb  

   start     

q₃



  

Modeling Finite Computation
● Some of the states in our 

computational device will 
be marked as accepting 
states. These are denoted 
with a double ring.

● If the device ends in an 
accepting state after 
seeing all the input, 
accepts the input (says 
YES)

● If the device does not end 
in an accepting state after 
seeing all the input, it 
rejects the input (says NO).
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Modeling Finite Computation
● Try it yourself! 

Which of these 
strings does this 
device accept?

aab  

aabb  

abbababba  
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Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Finite Automata
● This type of computational 

device is called a finite 
automaton (plural: finite 
automata).

● Finite automata model 
computers where (1) 
memory is finite and (2) 
the computation produces 
as YES/NO answer.

● In other words, finite 
automata model 
predicates, and do so with 
a fixed, finite amount of 
memory.

Finite-memory
Computer

input  
YES

NO
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Formalizing Things



  

Strings
● An alphabet is a finite, nonempty set of symbols 

called characters.
● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:
a    aabaaabbabaaabaaaabbb    abbababba  

● The empty string has no characters and is denoted ε.
● Calling attention to an earlier point: since all strings 

are finite sequences of characters from Σ, you cannot 
have a string of infinite length.



  

Languages
● A language over Σ is a set L consisting of 

strings over Σ.
● Example: The language of palindromes over 

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in 
Σ is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ 
when L ⊆ Σ*.

 



  

Mathematical Lookalikes
● We now have ∈, ε, Σ, and Σ*. Yikes!
● The symbol ∈ is the element-of relation.
● The symbol ε is the empty string.
● The symbol Σ denotes an alphabet.
● The expression Σ* means “all strings that can 

be made from characters in Σ.”
● That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.  
● Ever get confused? Just ask!



  

The Cast of Characters
● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of            

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of                           



  

Finite Automata and Languages
● Let A be an 

automaton that 
processes strings 
drawn from an 
alphabet Σ.

● The language of A, 
denoted (ℒ A), is the 
set of strings over Σ 
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }
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Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }
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● Let D be the automaton shown to the 
right. It processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

● So (ℒ D) = { w ∈ {a, b}* | w ends in a }.



  ℒ(A) = { w ∈ Σ* | A accepts w }

q₀   start     
a, b

 q₁
a, b

q₀

q₀   start     a, b

 

q₁
a, b

 

q₂

a, b

This means “take this
transition if you see

an a or a b.”

q₀   start     
       a, bq₀

What are the languages
of these automata? Answer at

https://cs103.stanford.edu/pollev

(I) (II)

(III)

https://cs103.stanford.edu/pollev


  

The Story So Far
● A finite automaton is a collection of states joined by 

transitions.
● Some state is designated as the start state.
● Some number of states are designated as accepting 

states.
● The automaton processes a string by beginning in the 

start state and following the indicated transitions.
● If the automaton ends in an accepting state, it accepts 

the input.
● Otherwise, the automaton rejects the input.
● The language of an automaton is the set of strings it 

accepts.



  

A Small Problem
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Another Small Problem
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The Need for Formalism
● In order to reason about the limits of 

what finite automata can and cannot do, 
we need to formally specify their behavior 
in all cases.

● All of the following need to be defined or 
disallowed:
● What happens if there is no transition out of 

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs
● A DFA is defined relative to some 

alphabet Σ.
● For each state in the DFA, there must be 

exactly one transition defined for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

Is this a DFA over {0, 1}?
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Is this a DFA over {0, 1}?
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Is this a DFA over {0, 1}?
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Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3
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q2
0, 1



  

Is this a DFA over {0, 1}?
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Designing DFAs
● At each point in its execution, the DFA 

can only remember what state it is in.
● DFA Design Tip: Build each state to 

correspond to some piece of information 
you need to remember.
● Each state acts as a “memento” of what 

you're supposed to do next.
● Only finitely many different states means 

only finitely many different things the 
machine can remember.



  

Recognizing Languages with DFAs
L = { w ∈ {a, b}*| the number of b's in w is congruent

         to two modulo three }

q0
start q1 q2

b b

a a a

b

Each state remembers 
the remainder of the 
number of bs seen so 
far modulo three.



  

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }
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More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

Let’s have the a symbol be a placeholder for “some character that 
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help 
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa



  

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

q1
start q2

* q3

*

q4
/q0

/

q5

     a, /      *
a

a, *

/, a

Σ  

Σ



  

Next Time
● Regular Languages

● An important class of languages.
● Nondeterministic Computation

● Why must computation be linear?
● NFAs

● Automata with Magic Superpowers.
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