	Is defined as...	To prove that this is true...	If you assume this is true...
$x \in S \cap T$	$x \in S$ and $x \in T$	Prove $x \in A$. Then prove $x \in B$.	Assume $x \in A$. Then assume $x \in B$.
$x \in S \cup T$	$x \in S$ or $x \in T$	Prove either $x \in S$ or that $x \in T$.	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.
$S \subseteq T$	For every $x \in S$, we have $x \in T$	Pick an arbitrary $x \in S$. Prove $x \in T$.	Initially, do nothing. Once you find some $x \in S$, conclude $x \in T$.
$S=T$	$S \subseteq T$ and $T \subseteq S$	Prove $S \subseteq T$. Then prove $T \subseteq S$.	Assume $S \subseteq T$ and $T \subseteq S$.
$X \in 母(A)$	$X \subseteq A$.	Prove $X \subseteq A$.	Assume $X \subseteq A$.

	To prove that this is true...	If you assume this is true...
$\forall \chi . A$	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.	Initially, do nothing. Once you find a z through other means, you can state it has property A.
$\exists \chi . A$	Find an x where A is true. Then prove that A is true for that specific choice of x.	Introduce a variable x into your proof that has property A.
$A \rightarrow B$	Assume A is true, then prove B is true.	Initially, do nothing. Once you know A is true, you can conclude B is also true.
$A \wedge B$	Prove A. Then prove B.	Assume A. Then assume B.
$A \vee B$	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)	Consider two cases. Case 1: A is true. Case 2: B is true.
$A \leftrightarrow B$	Prove $A \rightarrow B$ and $B \rightarrow A$.	Assume $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Lecture 0: Set Theory Symbols

- $\in \& \ddagger$
- \subseteq
- \emptyset
- $\{n \mid n \in \mathbb{N}$ and n is even $\}$
- $A \cup B$
- $A \cap B$
- A-B
- $\mathrm{A} \Delta \mathrm{B}$
- $|\mathrm{S}|$
- $\wp(\mathrm{S})$
- Ko

Element of / not an element of Subset of

Empty set
Example of set-builder notation
Set union
Set intersection
Set difference
Set symmetric difference
Cardinality
Power set of S
Aleph-zero (the cardinality of \mathbb{N})

Lecture 1 / Problem Set 1 Definitions

Sets of numbers

- \mathbb{N} is the set of natural numbers: $\{0,1,2,3, \ldots\}$
- \mathbb{Z} is the set of integers: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- \mathbb{R} is the set of real numbers

Parity

- An integer n is called even if there is an integer k where $\mathrm{n}=2 \mathrm{k}$.
- An integer n is called odd if there is an integer k where $\mathrm{n}=2 \mathrm{k}+1$.

Modular congruence

- For integers a and b, we say that $a \equiv_{k} b$ if there is an integer q such that $\mathrm{a}=\mathrm{b}+\mathrm{kq}$.

Lecture 1: Proof Strategies

- A universally-quantified statement is a statement of the form

For all x, [some-property] holds for x.

- An existentially-quantified statement is a statement of the form

There is some x where [some-property] holds for x.

- To directly prove a universally quantified statement, allow the reader to pick an x and show that it has [some-property].
- To directly prove an existentially quantified statement, specifically say what to pick for x and show that it has [some-property].

See also the Guide to Proofs

Lecture 2: Definitions

- A proposition is a statement that is either true or false.
- The negation of a proposition X is a proposition that is true when X is false and is false when X is true
- The negation of a universal is an existential.
- The negation of an existential is a universal.
- The negation of an implication "if P, then Q " is " P and not Q."
- An implication is a statement of the form "If P is true, then Q is true." P is called the antecedent and Q is called the consequent.
- The contrapositive of the implication "If P is true, then Q is true" is the implication "If Q is false, then P is false."
- A biconditional is a statement of the form "P if and only if Q "

Lecture 2: Proof Strategies

See the Guide to Proofs

- Proving an implication: First, assume the antecedent. Then, prove the consequent.
- Proof by contradiction: First, assume that P is false. The goal is to show that this assumption is silly. Next, show this leads to an impossible result. Finally, conclude that since P can't be false, we know that P must be true.
- Proof by contrapositive: Start by announcing that we're going to use a proof by contrapositive so that the reader knows what to expect. Then, explicitly state the contrapositive of what we want to prove. Then, go prove the contrapositive. (See "proving an implication"!)

Lecture 3: Propositional Connectives

Expression	English Translation	Negation of Expression
$\mathrm{A} \wedge \mathrm{B}$	A and B	2 possibilities: $\neg \mathrm{A} \vee \neg \mathrm{B}, \mathrm{A} \rightarrow \neg \mathrm{B}$
$\mathrm{A} \vee \mathrm{B}$	A or B	$\neg \mathrm{A} \wedge \neg \mathrm{B}$
$\neg \mathrm{A}$	Not A	A
$\mathrm{A} \rightarrow \mathrm{B}$	A implies B	$\mathrm{A} \wedge \neg \mathrm{B}$
$\mathrm{A} \leftrightarrow \mathrm{B}$	A if and only if B	2 possibilities: $\mathrm{A} \leftrightarrow \neg \mathrm{B}, \neg \mathrm{A} \leftrightarrow \mathrm{B}$
T	True	\perp
\perp	False	T

Truth table tool

Lecture 3: Operators

Operator precedence:

- \neg binds to whatever immediately follows it.
- \wedge and \vee bind more tightly than $\rightarrow: p \wedge q \rightarrow r$ is equivalent to $(p \wedge q) \rightarrow$ r
- Operators are right-associative: $\mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{r}$ is equivalent to $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$

De Morgan's Laws:

- $\neg(p \wedge q)$ is the same as $\neg p \vee \neg q$
- $\neg(\mathrm{p} \vee \mathrm{q})$ is the same as $\neg \mathrm{p} \wedge \neg \mathrm{q}$

Lecture 4: Quantifiers

- \exists is the existential quantifier. A statement of the form
$\exists \mathrm{x}$. some-formula
is true for a certain world if there exists a choice of x where some-formula is true when that x is plugged into it. Existentially-quantified statements are false unless there's a positive example. The \exists quantifier usually is paired with \wedge.
- \forall is the universal quantifier. A statement of the form
$\forall \mathrm{x}$. some-formula
is true for a certain world if, for every choice of x , the statement some-formula is true when x is plugged into it. Universally-quantified statements are true unless there's a counterexample. The \forall quantifier usually is paired with \rightarrow.

Lecture 4: The Type-Checking Table

	\ldots operate on...	\ldots and produce
Connectives $(\leftrightarrow, \Lambda$, etc. $) \ldots$	propositions	a proposition
Predicates $(=$, etc. $) \ldots$	objects	a proposition
Functions ...	objects	an object

Lecture 5: The Aristotelian Forms

"All As are Bs"
$\forall \boldsymbol{X} .(A(x) \rightarrow B(x))$
"No As are Bs"
$\forall x .(A(x) \rightarrow \neg B(x))$
"Some As are Bs"
$\boldsymbol{\exists x}$. ($\mathbf{A (x) ~} \boldsymbol{\wedge} \boldsymbol{B}(\mathbf{x})$)
"Some As aren't Bs"
$\exists \boldsymbol{x} .(\mathbf{A}(\mathbf{x}) \wedge \neg B(x))$

Lecture 5: The Extremely Important Table

	When is this true?	When is this false?
$\forall x . P(x)$	For all objects x, $P(x)$ is true.	$\exists x \cdot \neg P(x)$
$\exists \chi . P(x)$	There is an x where $P(x)$ is true.	$\forall x \cdot \neg P(x)$
$\forall x . \neg P(x)$	For all objects x, $P(x)$ is false.	ヨx. P(x)
$\exists x . \neg P(x)$	There is an x where $P(x)$ is false.	$\forall x . P(x)$

Lecture 5: Quantifiers over Sets
The notation

$$
\forall x \in S . P(x)
$$

means "for any element x of set $S, P(x)$ holds." (It's vacuously true if S is empty.)
The notation

$$
\exists x \in S . P(x)
$$

means "there is an element x of set S where $P(x)$ holds." (It's false if S is empty.)

