Lecture 06: Functions

- $f: A \rightarrow B$ notates that f is a function with domain A and codomain B
- Rules of functions:
 - $\circ \quad \forall a \in A. \exists b \in B. f(a) = b$
 - *f* can only be applied to elements of its domain
 - For any x in the domain, f(x) is an element of the codomain
 - $\circ \quad \forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 = a_2 \rightarrow f(a_1) = f(a_2))$
 - Equal inputs produce equal outputs
- Piecewise functions
 - For every x in the domain, at least one rule has to apply
 - All applicable rules should give the same result
 - Example:

$$f(n) = egin{cases} k & ext{if } \exists k \in \mathbb{N}. \, n = 2k \ -(k+1) & ext{if } \exists k \in \mathbb{N}. \, n = 2k+1 \end{cases}$$

Lecture 06: Special types of functions

f : A → B is **injective** (one-to-one) if either of these equivalent statements is true:

$$\forall \mathbf{x}_1 \in \mathbf{A}. \ \forall \mathbf{x}_2 \in \mathbf{A}. \ (\mathbf{x}_1 \neq \mathbf{x}_2 \Rightarrow f(\mathbf{x}_1) \neq f(\mathbf{x}_2))$$
$$\forall \mathbf{x}_1 \in \mathbf{A}. \ \forall \mathbf{x}_2 \in \mathbf{A}. \ (f(\mathbf{x}_1) = f(\mathbf{x}_2) \Rightarrow \mathbf{x}_1 = \mathbf{x}_2)$$

An injective function associates at most one element of the domain with each element of the codomain.

 $f : \mathbf{A} \rightarrow \mathbf{B}$ is surjective (onto) if it has this property:

$$\forall b \in B. \exists a \in A. f(a) = b$$

A surjective function associates at least one element of the domain with each element of the codomain.

 $f : \mathbf{A} \rightarrow \mathbf{B}$ is **bijective** if it is both injective and surjective.

Lecture 07: Function Composition

If we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the **composition of** f and g, **denoted** $g \circ f$, is a function where

- $g \circ f : A \rightarrow C$
- $(g \circ f)(\mathbf{x}) = g(f(\mathbf{x}))$
 - Notice the parentheses around $(g \circ f)$. When applying some property to $(g \circ f)$, treat it like its own function!

	To prove that this is true	If you assume this is true	
$\forall x. A$	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.	Initially, <i>do nothing</i> . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .	
$\exists x. A$	Find an x where A is true. Then prove that A is true for that specific choice of x.	Introduce a variable x into your proof that has property A.	
$A \rightarrow B$	Assume A is true, then prove B is true.	Initially, do nothing . Once you know A is true, you can conclude B is also true.	
$A \land B$	Prove A. Then prove B.	Assume A. Then assume B.	
A v B	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)	Consider two cases. Case 1: A is true. Case 2: B is true.	
$A \leftrightarrow B$	Prove $A \rightarrow B$ and $B \rightarrow A$.	Assume $A \rightarrow B$ and $B \rightarrow A$.	
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.	

	Is defined as	To prove that this is true	If you assume this is true
$S \subseteq T$	$\forall x \in S. \ x \in T$	Pick an arbitrary $x \in S$. Prove $x \in T$	Initially, do nothing . Once you find some $x \in S$, conclude $x \in T$.
S = T	$S \subseteq T \land T \subseteq S$	Prove $S \subseteq T$. Then prove $T \subseteq S$.	Assume $S \subseteq T$ and $T \subseteq S$.
$x \in A \cap B$	$x \in A \land x \in B$	Prove $x \in A$. Then prove $x \in B$.	Assume $x \in A$. Then assume $x \in B$.
$x \in A \cup B$	$x \in A \forall x \in B$	Either prove $x \in A$ or prove $x \in B$.	Consider two cases: Case 1: $x \in A$. Case 2: $x \in B$.
$X \in \wp(A)$	$X \subseteq A$.	Prove $X \subseteq A$.	Assume $X \subseteq A$.
$x \in \{ y \mid P(y) \}$	P(x)	Prove $P(x)$.	Assume <i>P</i> (<i>x</i>).

Problem Set 3 concept: Function Inverses

Let $f: A \to B$ be a function. A function $g: B \to A$ is called a *left inverse of* f if the following is true:

$$orall a \in A. \, g(f(a)) = a.$$

Let $f: A \to B$ be a function. A function $g: B \to A$ is called a *right inverse of* f if the following is true:

 $\forall b \in B. f(g(b)) = b.$

Lecture 09: Graphs

- An **undirected graph** is an ordered pair G = (V, E), where
 - \circ $\,$ $\,$ Vis a set of nodes, which can be anything, and
 - E is a set of edges, which are unordered pairs of nodes drawn from V.
 - Because an unordered pair is a set {a, b} of two elements a ≠ b, self-loops (edges from nodes to themselves) are not allowed.
- A directed graph (or digraph) is an ordered pair G = (V, E), where
 - V is a set of nodes, which can be anything, and
 - E is a set of edges, which are ordered pairs of nodes drawn from V.
- A vertex cover of an undirected graph G = (V, E) is a set $C \subseteq V$ such that:

 $\forall x \in V. \ \forall y \in V. (\{x, y\} \in E \rightarrow (x \in C \lor y \in C))$ ("Every edge has at least one endpoint in C.")

• An independent set in an undirected graph G = (V, E) is a set I ⊆ V such that:

```
\forall u \in I. \ \forall v \in I. \ \{u,v\} \notin E. ("No two nodes in I are adjacent.")
```

Lecture 10: Graph Traversals

Given a graph G = (V, E):

- Two nodes $u, v \in V$ are adjacent if we have $\{u, v\} \in E$.
- A walk is a sequence of one or more nodes v₁, v₂, v₃, ..., v□ such that any two consecutive nodes in the sequence are adjacent.
 - The length of a walk of n nodes is n-1.
- A closed walk is a walk from a node back to itself.
 - (By convention, a closed walk cannot have length zero.)
- A path is a walk that does not repeat any nodes.
- A cycle is a closed walk that does not repeat any nodes or edges except the first/last node.
- A node v is **reachable** from a node u if there is a path from u to v.
- G is called **connected** if all pairs of distinct nodes in G are reachable.
- A **connected component** (or CC) of G is a set consisting of a node and every node reachable from it.
- The degree of a node v is the number of nodes that v is adjacent to.

Lecture 11: Pigeonhole Principle

The Pigeonhole Principle:

If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

The Generalized Pigeonhole Principle:

If m objects are distributed into n bins, then

- some bin will have at least $\lceil m/n \rceil$ objects in it, and
- some bin will have at most $\lfloor m/n \rfloor$ objects in it.

Theorem on Friends and Strangers: Color each edge of K₆ red or blue. The resulting graph contains a monochrome copy of K₃.

Lecture 12: Induction

A **proof by induction** is a way to show that some result P(n) is true for all natural numbers n. In a proof by induction, there are three steps:

- Prove that P(0) is true. This is called the basis or the base case.
- Pick an arbitrary $k \in \mathbb{N}$. Prove that if P(k) is true, then P(k+1) is true.
 - This is called the inductive step.
 - \circ The assumption that P(k) is true is called the inductive hypothesis.
- Conclude, by induction, that P(n) is true for all $n \in \mathbb{N}$.

Lecture 13: Induction Variants

Induction starting at m:

- Prove that P(m) is true. This is called the basis or the base case.
- Pick an arbitrary $k \ge m$. Prove that if P(k) is true, then P(k+1) is true.
 - This is called the inductive step.
 - \circ The assumption that P(k) is true is called the inductive hypothesis.
- Conclude, by induction, that P(n) is true for all natural numbers $\geq m$

Induction can also be taken with **bigger step sizes** (prove if P(k) is true, then P(k + x) is true for some x) or **multiple base cases**.

Lecture 13: Inducting Up and Down

Building up: If the **predicate P(n)** is existentially quantified, start with the object provided by assuming that P(k) is true.

Building down: If the **predicate P(n)** is universally quantified, start by picking an arbitrary object needed to show P(k + 1) is true.

Lecture 13: Complete Induction

- Define some predicate P(n) to prove by induction on n.
- Choose and prove a base case (probably, but not always, P(0)).
- Pick an arbitrary k ∈ N and assume that P(0), P(1), P(2), ..., and P(k) are all true.
 - This is the only difference between complete induction and normal induction.
 - You can use complete induction when you need a stronger assumption during your inductive step.
 - If your base case was not P(0), you would start from whatever your base case(s) were up to k, instead of starting at 0.
- Prove P(k+1).
- Conclude that P(n) holds for all $n \in \mathbb{N}$.