Networking
Friday Four Square!
Outside Gates, 4:15PM
Computer Networks

- Computer networks allow us to get amazing things done.
 - Sharing knowledge (Wikipedia, Khan Academy, etc.)
 - Solving huge problems (folding@home, SETI, etc.)

- Computer networks prevent us from getting amazing things done.
 - Social networks (Facebook, Google+, etc.)
 - Streaming video (Hulu, Netflix, etc.)
How does it all work?
LOL
LOL
OMG

LOL
Sending Data

- Data is sent across the Internet in packets.
- Each packet contains a message (called the payload), along with extra information to help it get to its destination correctly.
IP Addresses

• Each computer may have one or more IP addresses so that it can receive messages over the Internet.
 • Similar to a phone number.
• There are two types of IP addresses:
 • IPv4: 2^{32} possible addresses (about four billion), and we're rapidly running out!
 • IPv6: 2^{128} possible addresses (about 4×10^{34}), and we're very unlikely to run out in the future.
Hostnames

- In order to make it easier to find remote computers, computers can have names associated with them.
 - www.google.com
 - www.stanford.edu
- These names are called hostnames.
- A system called the domain name system is responsible for converting domain names into IP addresses.
 - Kind of like a huge Map<String, IP Address>
A Small Problem

• At any one time, you could be
 • Surfing the web,
 • Downloading music from iTunes,
 • Checking your email,
 • Chatting on IM,
 • etc.
• You might have packets from many different machines all arriving at once.
• How does the computer know how to send each message to the right program?
Ports

• Every packet is labeled with a port number that lets the destination computer know how to process the message.

• Different applications listen in on different ports:
 • Sending mail (SMTP): Port 25
 • Browsing the web (HTTP): Port 80
 • Checking email (IMAP): Port 143
80
RickRoll.html

80 143 3689
3689
Never Gonna Give You Up.m4a
Sockets

- A **socket** is a combination of an IP address (destination computer) and port number (what program should read the message).
- All the information necessary to ensure that a message gets to the right program on the right computer.
- To set up a connection to a remote computer, you need to create a socket connection to that computer.
Application Protocols

• Now that we can get computers talking to one another, how do they communicate information in a meaningful way?

• An **application protocol** is a set of rules computers can follow to communicate over a network.

• Each computer follows the rules of the protocol to share information.
An Example: HTTP
Networking in Java

• To connect to a remote machine:
 • Create a socket connection to the machine by giving a combination of the host name and the port.
 • Create a `BufferedReader` to read messages coming from the other computer.
 • Create a `PrintWriter` to send messages to the other computer.
 • Send and receive messages as you see fit!
Client/Server Architecture

• A **server** is a program that waits for incoming connections.
 • Typically, has some data or service that it can provide.

• A **client** is a program that initiates a connection to a server.
 • Typically, wants to use that data or service.
 • The program we just wrote was a client that connected to a remote web server.
Acting as a Server

• A program can act as a server as follows:
 • Create a `ServerSocket` on a given port and wait for an incoming connection.
 • Obtain a `Socket` that lets you communicate with the machine that has connected.
 • Proceed as before.
A Simple Chat Program