
YEAH hours | NameSurfer

Interactors!
Make them, add them, use them

create & add them in the “init” method

call addActionListeners() to tell your program to listen for action events

example to create a JButton:
JButton graph = new JButton("Graph");

Once ActionListeners are activated, your program calls
public void actionPerformed(ActionEvent e) {...}

whenever an action event happens. You just have to change the code inside that method to

make sure your program responds the way you want it to.

FOR EXAMPLE, if I had a console program and I wanted to print “cats” every time someone

triggered an action event, this is what I’d do:
public void actionPerformed(ActionEvent e) {

println(“cats”);
}

If an action event is triggered, it could have come from the Graph button, the Clear button,

or the text field. How do I know where it came from?

Two ways:

● e.getActionCommand()
○ returns a string containing the name of the source

■ so, for example with our Graph JButton above, you would get “Graph” in

response to e.getActionCommand() if “Graph” was pressed

● e.getSource()
○ returns a reference to the interactor that caused the event

■ so, if “graph” was an instance variable representing your graph button,

you could see if e.getSource() == graph

Maps!
Like dictionaries: store keys and values

Constructor:
HashMap<String, String> map = new HashMap<String, String>();

Add something:

map.add(“cats”, “cats.jpg”);
See if a map contains something:

boolean mapContainsDogs = map.containsKey(“dogs”);



Get a value from a map:

String catsImagefile = map.get(“cats”);

NameSurfer: Classes
NameSurfer

Puts everything together

NameSurferConstants

Get constants from here--nothing to implement

NameSurferEntry

Stores info for a name - the name’s string and the values for all the years

NameSurferDataBase

Holds all the data

Reads in the data from a text file and stores it as a NameSurferEntry, locates the data

associated with a name

NameSurferGraph

Subclass of GCanvas that displays the graph using GLines and GLabels

Milestones
Milestone 1: Assemble GUI Interactors

1. Set up a JTextField, Graph, and Clear buttons.

2. Temporarily change “Program” to “ConsoleProgram”

3. Test “Graph”’s output (for example, have the program print out the text from the textField

every time graph is pushed) using the ConsoleProgram

Milestone 2: Implement the NameSurferEntry class

Object stores two things: name and a list of the 12 values indicating the ranks

Constructed with a line from the NamesData.txt file e.g.:

Sam 58 69 99 131 168 236 278 380 467 408 466 997

String line = rd.readLine();
NameSurferEntry entry = new NameSurferEntry(line);

Helpful hints:

● you can convert Strings to Integers using Integer.parseInt(String s)
● look at String.split or the StringTokenizer class to parse the strings



● Think about what instance variables you want to use in your NameSurferEntry object to

store the name and ranks data to make getName() and getRank easy to implement

Milestone 3: Implement that NameSurferDatabase class

● Constructor: takes in the name of a datafile, reads in that datafile and stores it

(somehow--which data structure would be the best?!)

○ remember how to read in a data file from Hangman?

● findEntry: take in a name, look it up in the database, return the NameSurferEntry object

associated with it

Milestone 4: Create the Background Grid for the NameSurferGraph class

● Make NameSurferGraph extend Program again

● Make a NameSurferGraph object in your NameSurfer class
private NameSurferGraph;
graph = new NameSurferGraph();
add(graph);

● add the lines of the graph and the decade labels in the update method (don’t forget

proper decomp!)

Milestone 5: Complete the Implementation of NameSurferGraph

● Maintain a list of of values that are currently on display

○ addEntry adds a new NameSurferEntry to this list

○ clear() deletes all the entries

○ Neither addEntry or clear actually changes the display!

● the update method is the one that updates the display:

○ 1) delete all GObjects from the canvas

○ 2) draw everything again

● Make sure the lines on the graph cycle through different colors

● Mark rank 0 as a *


